Question 1: (12 pts) For each of the following functions, find the derivative $\frac{dy}{dx}$. You do not have to simplify your answers.

a)
$$y = \ln\left(\frac{x^4 \cos^6(3x+2)}{\sqrt[3]{x^2+1}}\right)$$

b)
$$y = \sec^3(e^{4x-1})$$

c)
$$3\cot(x+y) = \sin(y^2)$$

d)
$$y = e^{(\frac{1}{x^2})} \cos^{-1}(\sqrt{x})$$

Question 2: (8 pts) For each of the following functions, find the second derivative $\frac{d^2y}{dx^2}$. Simplify your answers as much as possible.

a)
$$y = x^2 \tan\left(\frac{1}{x}\right)$$

$$\mathbf{b)} \quad y = x \sin(\ln(x))$$

Question 3: (4 pts) Find the equation of the line that is tangent to the graph of $x^2 + y^2 = 25$, at the point (3,-4).

Question 4: (4 pts) Find the slope of the line that is normal to the graph of $y = \frac{6}{(x^2 + 1)^2}$ at x = 1.

Question 5: (5 pts) Solve the equation $\cos(2x) - 3x = -1$, using Newton's method. Give an answer that is accurate to four decimals, and start with a guess of $x_1 = 1$.

Question 6: (4 pts) The impedance Z (in Ω) in an electric circuit is given by $Z = \sqrt{R^2 + (X_L - X_C)^2}$. If $R = 2500 \Omega$ and $X_L = 1500 \Omega$, then find the value of X_C that makes the impedance Z a minimum.

Question 7: (4 pts) The electrical potential on the line 3y - x = 2 is given by the function $V = 4x^2 - 18y^2 + 2$. At what point of the line is the potential minimum?

Question 8: (30 pts) Evaluate the following integrals.

a)
$$\int \frac{1}{x^4} - x^4 + e^x - \frac{1}{e^4} dx$$
 b) $\int \sin^{-1}(x) dx$ c) $\int x^2 e^{x^3} dx$
d) $\int 3x^2 \ln(x) dx$ e) $\int x^2 \sin(2x) dx$ f) $\int \frac{-3}{\sqrt{4 - 9x^2}} dx$
g) $\int \frac{\tan(\ln(x))}{x} dx$ h) $\int \frac{\cos(x)}{3 + \sin^2(x)} dx$ i) $\int_1^5 (\sqrt{2x - 1})^3 dx$

b)
$$\int \sin^{-1}(x) \ dx$$

$$\mathbf{c)} \quad \int x^2 \ e^{x^3} \ dx$$

d)
$$\int 3x^2 \ln(x) dx$$

$$\mathbf{e)} \quad \int x^2 \sin(2x) \ dx$$

$$\mathbf{f)} \quad \int \frac{-3}{\sqrt{4-9x^2}} \ dx$$

$$\mathbf{g)} \quad \int \frac{\tan(\ln(x))}{x} \ dx$$

$$\mathbf{h)} \quad \int \frac{\cos(x)}{3 + \sin^2(x)} \ dx$$

i)
$$\int_{1}^{5} (\sqrt{2x-1})^{3} dx$$

$$\mathbf{j}) \quad \int \frac{x+2}{x^2+4x+5} \ dx$$

Question 9: (4 pts) Find the area enclosed by the curves $y = x^2$ and y = 2 - x.

Question 10: (5 pts) Give an estimate of $\int_0^1 \sqrt{x^3 + 1} \ dx$ to four decimals, using n = 4 and

a) the Trapezoidal Rule

b) Simpson's Rule

Question 11: (4 pts) In coming to a stop, the acceleration of a car is given by a(t) = -4t. The car is traveling at 32 m/s when it starts braking.

- a) How long does it take for the car to stop?
- b) What is the car's braking distance?

Question 12: (4 pts) Find a_0 and b_3 of the Fourier series for the function

$$f(x) = \begin{cases} 0 & \text{if } -\pi \leqslant x < 0 \\ x & \text{if } 0 \leqslant x < \pi \end{cases}$$

Question 13: (2 pts) Determine if the function $y = x^4 + x + C \ln(x)$ is a solution of the differential equation $xy'' + y' = 16x^3$.

Question 14: (4 pts) Find the solution of the differential equation $y' = (1-y)\cos(x)$, with the condition that y = 0 when $x = \frac{\pi}{6}$.

Question 15: (6 pts) Find a general solution of the following differential equations.

- $\mathbf{a)} \ y' = \sin(x)\sec(y)$
- **b)** y' y = 3x

Answers

1. a)
$$y' = \frac{4}{x} - 18\tan(3x+2) - \frac{2x}{3(x^2+1)}$$
 b) $y' = 12\sec^3(e^{4x-1})\tan(e^{4x-1})$

c)
$$y' = \frac{-3\csc^2(x+y)}{3\csc^2(x+y) + 2y\cos(y^2)}$$
 d) $y' = -e^{1/x^2} \left(\frac{1}{2\sqrt{1-x}\sqrt{x}} + \frac{2\cos^{-1}(\sqrt{x})}{x^3} \right)$

2. a)
$$y' = 2x \tan\left(\frac{1}{x}\right) - \sec^2\left(\frac{1}{x}\right)$$
 b) $y' = \sin(\ln(x)) + \cos(\ln(x))$

3.
$$y = \frac{3}{4}x - \frac{25}{4}$$

- **4.** 1/3
- **5.** 0.5086

6.
$$X_C = 1500$$

8. a)
$$\frac{-1}{3x^3} - \frac{x^5}{5} + e^x - e^{-4}x + C$$
 b) $x \sin^{-1}(x) + \sqrt{1 - x^2} + C$ c) $\frac{e^{x^3}}{3} + C$

d)
$$x^3 \ln(x) - \frac{x^3}{3} + C$$
 e) $\frac{-x^2 \cos(2x)}{2} + \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} + C$

d)
$$x^{3} \ln(x) - \frac{x^{3}}{3} + C$$
 e) $\frac{-x^{2} \cos(2x)}{2} + \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} + C$
f) $-\sin^{-1}\left(\frac{3x}{2}\right) + C$ g) $-\ln(\cos(\ln(x))) + C$ h) $\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{\sin(x)}{\sqrt{3}}\right) + C$

i)
$$\frac{242}{5}$$
 j) $\frac{1}{2} \ln |x^2 + 4x + 5| + C$

12.
$$a_0 = \frac{\pi}{4}$$
 $b_3 = \frac{1}{3}$

14.
$$y = 1 - e^{1/2 - \sin(x)}$$

15. a)
$$y = \sin^{-1}(-\cos(x) + C)$$
 b) $y = -3x - 3 + Ce^x$