Question 1: (12 pts) For each of the following functions, find the derivative $\frac{d y}{d x}$. You do not have to simplify your answers.
a) $y=\ln \left(\frac{x^{4} \cos ^{6}(3 x+2)}{\sqrt[3]{x^{2}+1}}\right)$
b) $y=\sec ^{3}\left(e^{4 x-1}\right)$
c) $3 \cot (x+y)=\sin \left(y^{2}\right)$
d) $y=e^{\left(\frac{1}{x^{2}}\right)} \cos ^{-1}(\sqrt{x})$

Question 2: (8 pts) For each of the following functions, find the second derivative $\frac{d^{2} y}{d x^{2}}$. Simplify your answers as much as possible.
a) $y=x^{2} \tan \left(\frac{1}{x}\right)$
b) $y=x \sin (\ln (x))$

Question 3: (4 pts) Find the equation of the line that is tangent to the graph of $x^{2}+y^{2}=25$, at the point $(3,-4)$.

Question 4: (4 pts) Find the slope of the line that is normal to the graph of $y=\frac{6}{\left(x^{2}+1\right)^{2}}$ at $x=1$.

Question 5: (5 pts) Solve the equation $\cos (2 x)-3 x=-1$, using Newton's method. Give an answer that is accurate to four decimals, and start with a guess of $x_{1}=1$.

Question 6: (4 pts) The impedance Z (in Ω) in an electric circuit is given by $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$. If $R=2500 \Omega$ and $X_{L}=1500 \Omega$, then find the value of X_{C} that makes the impedance Z a minimum.

Question 7: (4 pts) The electrical potential on the line $3 y-x=2$ is given by the function $V=4 x^{2}-18 y^{2}+2$. At what point of the line is the potential minimum?

Question 8: (30 pts) Evaluate the following integrals.
a) $\int \frac{1}{x^{4}}-x^{4}+e^{x}-\frac{1}{e^{4}} d x$
b) $\int \sin ^{-1}(x) d x$
c) $\int x^{2} e^{x^{3}} d x$
d) $\int 3 x^{2} \ln (x) d x$
e) $\int x^{2} \sin (2 x) d x$
f) $\int \frac{-3}{\sqrt{4-9 x^{2}}} d x$
g) $\int \frac{\tan (\ln (x))}{x} d x$
h) $\int \frac{\cos (x)}{3+\sin ^{2}(x)} d x$
i) $\int_{1}^{5}(\sqrt{2 x-1})^{3} d x$
j) $\int \frac{x+2}{x^{2}+4 x+5} d x$

Question 9: (4 pts) Find the area enclosed by the curves $y=x^{2}$ and $y=2-x$.
Question 10: ($5 \boldsymbol{p} \boldsymbol{t s}$) Give an estimate of $\int_{0}^{1} \sqrt{x^{3}+1} d x$ to four decimals, using $n=4$ and
a) the Trapezoidal Rule
b) Simpson's Rule

Question 11: (4 pts) In coming to a stop, the acceleration of a car is given by $a(t)=-4 t$. The car is traveling at $32 \mathrm{~m} / \mathrm{s}$ when it starts braking.
a) How long does it take for the car to stop?
b) What is the car's braking distance?

Question 12: ($4 \boldsymbol{p} \boldsymbol{t s}$) Find a_{0} and b_{3} of the Fourier series for the function

$$
f(x)=\left\{\begin{array}{llr}
0 & \text { if } & -\pi \leqslant x<0 \\
x & \text { if } & 0 \leqslant x<\pi
\end{array}\right.
$$

Question 13: (2 pts) Determine if the function $y=x^{4}+x+C \ln (x)$ is a solution of the differential equation $x y^{\prime \prime}+y^{\prime}=16 x^{3}$.

Question 14: (4 pts) Find the solution of the differential equation $y^{\prime}=(1-y) \cos (x)$, with the condition that $y=0$ when $x=\frac{\pi}{6}$.

Question 15: ($6 \boldsymbol{p t s}$) Find a general solution of the following differential equations.
a) $y^{\prime}=\sin (x) \sec (y)$
b) $y^{\prime}-y=3 x$

Answers

1. a) $y^{\prime}=\frac{4}{x}-18 \tan (3 x+2)-\frac{2 x}{3\left(x^{2}+1\right)}$ b) $y^{\prime}=12 \sec ^{3}\left(e^{4 x-1}\right) \tan \left(e^{4 x-1}\right)$
c) $y^{\prime}=\frac{-3 \csc ^{2}(x+y)}{3 \csc ^{2}(x+y)+2 y \cos \left(y^{2}\right)}$ d) $y^{\prime}=-e^{1 / x^{2}}\left(\frac{1}{2 \sqrt{1-x} \sqrt{x}}+\frac{2 \cos ^{-1}(\sqrt{x})}{x^{3}}\right)$
2. a) $y^{\prime}=2 x \tan \left(\frac{1}{x}\right)-\sec ^{2}\left(\frac{1}{x}\right)$
b) $y^{\prime}=\sin (\ln (x))+\cos (\ln (x))$
3. $y=\frac{3}{4} x-\frac{25}{4}$
4. $1 / 3$
5. 0.5086
6. $X_{C}=1500$
7. $(2,4 / 3)$
8. a) $\frac{-1}{3 x^{3}}-\frac{x^{5}}{5}+e^{x}-e^{-4} x+C \quad$ b) $x \sin ^{-1}(x)+\sqrt{1-x^{2}}+C \quad$ c) $\frac{e^{x^{3}}}{3}+C$
d) $x^{3} \ln (x)-\frac{x^{3}}{3}+C$ e) $\frac{-x^{2} \cos (2 x)}{2}+\frac{x \sin (2 x)}{2}+\frac{\cos (2 x)}{4}+C$
f) $-\sin ^{-1}\left(\frac{3 x}{2}\right)+C$ g) $-\ln (\cos (\ln (x)))+C$ h) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\sin (x)}{\sqrt{3}}\right)+C$
i) $\frac{242}{5} \quad$ j) $\frac{1}{2} \ln \left|x^{2}+4 x+5\right|+C$
9. $9 / 2$
$\begin{array}{ll}10 . & \text { a) } 1.1170 \\ \text { b) } 1.1114\end{array}$
10. a) $4 \mathrm{~s} \quad$ b) $256 / 3 \mathrm{~m}$
11. $a_{0}=\frac{\pi}{4} \quad b_{3}=\frac{1}{3}$
12. No
13. $y=1-e^{1 / 2-\sin (x)}$
14. a) $y=\sin ^{-1}(-\cos (x)+C) \quad$ b) $y=-3 x-3+C e^{x}$
