Exponential Functions Problem Set

Attempt the following problems without using a calculator.

- 1. Find the value of:
 - (a) e^0 (c) 2^{-5} (e) $27^{-2/3}$ (b) $8^{-1/3}$ (d) $\left(\frac{1}{4}\right)^{-3/2}$ (f) $2 \cdot 3^{5-4x}$, when x = 2
- 2. Solve for x:

(a) $2^x = 0$	(d) $9^x = 27$	(g) $6^{2x-1} = 36$	(i) $4^{x-1} = 8^x$
(b) $e^x = -3$	(e) $e^x = 1$		
(c) $3^x = \frac{1}{9}$	(f) $4 - 3^{x^2 - 1} = 1$	(h) $e^{4x^2-8} = e$	(j) $5^x = 25^{3x-1}$

- 3. Draw a sketch of the function $y = a^x$, if a > 1. Make a list of features that all graphs of this type have in common.
- 4. Simplify the expression $\frac{2e^{\frac{5x}{3}} + e^{\frac{2x}{3}}}{2e^{2x} + e^x}$, by first factoring out the greatest common factor from the numerator and from the denominator.
- 5. Use properties of exponents to simplify the expression $\frac{4e^x \cdot 4^{7x}}{e^{3-x}}$

Solutions

- 1. (a) 1
 (c) $\frac{1}{32}$ (e) $\frac{1}{9}$

 (b) $\frac{1}{2}$ (d) 8
 (f) $\frac{2}{27}$
- 2. (a) No solution (a^x is **never** negative and never 0)
 (b) No solution (exponentials can **only** give positive values)

(c) $x = -2$	(e) $x = 0$	(g) $x = \frac{3}{2}$	(i) $x = \frac{5}{2}$
(d) $x = \frac{3}{2}$	(f) $x = \sqrt{2} \text{ or } -\sqrt{2}$	(h) $x = \frac{3}{2}$ or $-\frac{3}{2}$	(j) $\frac{2}{5}$

3.

- *y*-values are always positive
 - passes through the point (0,1)
 - *y*-values are very small positive numbers when *x* is a large negative number (on the left of the graph)
- *y*-values are very large positive numbeers when *x* is a large positive number (on the right of the graph)

4.
$$\frac{1}{e^{x/3}}$$
 or $e^{-x/3}$

(0, 1)

5. $4^{7x+1}e^{2x-3}$