Solutions to Exponential Functions Problem Set

1. Find the value of:

(a)
$$e^{0}$$
 (c) 2^{-5} (e) $27^{-2/3}$
(b) $8^{-1/3}$ (d) $(\frac{1}{4})^{-3/2}$ (f) $2 \cdot 3^{5-4x}$, when $x = 2$
(c) $e^{\circ} = 1$ (d) $(\frac{1}{4})^{-3/2} = ((\frac{1}{4})^{1/2})^{-3}$ (e) $27^{-2/3} = (27)^{1/3})^{-2}$
(f) $2 \cdot 3^{5-4x}$, when $x = 2$
(g) $(\frac{1}{4})^{-3/2} = ((\frac{1}{4})^{1/2})^{-3}$ (f) $2 \cdot 3^{5-4x}$, when $x = 2$
(g) $(\frac{1}{4})^{-3/2} = ((\frac{1}{4})^{1/2})^{-3}$ (g) $27^{-2/3} = ((27)^{1/3})^{-2}$
(g) $27^{-2} = ((27)^{1/3})^{-$

2. Solve for x:

(a) $2^x = 0$ (b) $e^x = -3$ (c) $9^x = 27$ (c) $e^x = 1$	(g) $6^{2x-1} = 36$	(i) $4^{x-1} = 8^x$
(c) $3^x = \frac{1}{9}$ (f) $4 - 3^{x^2 - 3}$ a) No solution, 2^x will always give	$e^{1} = 1$ (h) $e^{4x^{2}-8} = e^{2x^{2}-1} = 1$	(j) $5^{x} = 25^{3x-1}$ (j) $4^{x-1} = 8^{x}$) reduce to
a positive result.	$4 - 1 = 3^{\times} - 1$	$(2^2)^2 = 2^3$
b) <u>No solution</u> , e ^x will always give	$3 = 3^{x^2 - 1}$ $3' = 3^{x^2 - 1}$	$2^{2^{X}-2} = 2^{3}$ $2^{X}-2 = 3$
a positive result. c) $3^{\times} = \frac{1}{9}$) = X ² -1	2x = 5 $X = \frac{5}{2}$
$3^{\times} = \frac{1}{3}a$	$x^2 = a$ $x = \pm \sqrt{a}$	$(j) 5^{x} = 25^{3x-1}$
$3^{\times} = 3^{-2}$	g) $b^{2x-1} = b^2$	3 = (5)
x = -2	$2 \times -1 = 2$	$5^{x} = 5^{bx - a}$ $x = bx - a$
d) $q^{\chi} = 27$) Reduce to	$2x = 3$ $X = \frac{3}{2}$	2 = 5X
$(3^2)^{\times} = 3^3$ common base $3^{2\times} = 3^3$	h) $e^{4x^2-8} = e^{4x^2-8}$	$x = \frac{5}{2}$
2x = 3 $x = \frac{3}{2}$	$4x^{2}-8 = 1$ $4x^{2}-9 = 0$ (2x-3)(2x+3) = 0	
$e) e^{o} = 1, so X = 0$	2x - 3 = 0 $x = -3$ $x = -3$	

3. Draw a sketch of the function $y = a^x$, if a > 1. Make a list of features that all graphs of this type have in common.

4. Simplify the expression $\frac{2e^{\frac{5x}{3}} + e^{\frac{2x}{3}}}{2e^{2x} + e^x}$, by first factoring out the greatest common factor from the numerator and from the denominator.

$$\frac{\partial e^{\frac{5x}{3}} + e^{\frac{2x}{3}}}{\partial e^{2x} + e^{x}} = \frac{e^{\frac{2x}{3}} \left(\partial e^{\frac{3x}{3}} + 1 \right)}{e^{x} \left(\partial e^{x} + 1 \right)} = \frac{e^{\frac{2x}{3}} \left(\partial e^{x} + 1 \right)}{e^{x} \left(\partial e^{x} + 1 \right)} = \frac{e^{\frac{2x}{3}}}{e^{x}} = \frac{1}{e^{\frac{2x}{3}}}$$

5. Use properties of exponents to simplify the expression $\frac{4e^x \cdot 4^{7x}}{e^{3-x}}$

$$\frac{4e^{x} \cdot 4^{7x}}{e^{3-x}} = \frac{e^{x}}{e^{3-x}} \cdot (4 \cdot 4^{7x}) = e^{x-(3-x)} \cdot 4^{1+7x} = e^{2x-3} \cdot 4^{7x+1}$$