Solutions to Exponential Functions Problem Set

1. Find the value of:

(a) e^{0}
(c) 2^{-5}
(e) $27^{-2 / 3}$
(b) $8^{-1 / 3}$
(d) $\left(\frac{1}{4}\right)^{-3 / 2}$
(f) $2 \cdot 3^{5-4 x}$, when $x=2$
a) $e^{0}=1$
(a^{0} is always 1)
b) $8^{-13}=\frac{1}{8^{1 / 3}}$
d) $\begin{array}{rlrl}\left(\frac{1}{4}\right)^{-3 / 2} & =\left(\left(\frac{1}{4}\right)^{1 / 2}\right)^{-3} & \text { e) } 27^{-2 / 3} & =\left((27)^{1 / 3}\right)^{-2} \\ & =\left(\frac{1}{\sqrt{4}}\right)^{-3} & & (\sqrt[3]{27})^{-2} \\ & =\left(\frac{1}{2}\right)^{-3} & & =3^{-2} \\ & =\frac{1}{3^{2}}=\frac{1}{9}\end{array}$
$=\frac{1}{\sqrt[3]{8}}=\frac{1}{2}$
$=2^{3}$
f) $2 \cdot 3^{5-4(2)}$
c) $2^{-5}=\frac{1}{2^{5}}=\frac{1}{32}$
$=2 \cdot 3^{5-8}=2 \cdot 3^{-3}=\frac{2}{3^{3}}=\frac{2}{27}$
2. Solve for x :
(a) $2^{x}=0$
(d) $9^{x}=27$
(g) $6^{2 x-1}=36$
(i) $4^{x-1}=8^{x}$
(b) $e^{x}=-3$
(e) $e^{x}=1$
(c) $3^{x}=\frac{1}{9}$
(f) $4-3^{x^{2}-1}=1$
(h) $e^{4 x^{2}-8}=e$
(j) $5^{x}=25^{3 x-1}$
a) No solution, 2^{x} will always give f) $4-3^{x^{2}-1}=1$

$$
\text { i) } 4^{x-1}=8^{x}
$$ a positive result.

$$
\left(2^{2}\right)^{x-1}=2^{3}
$$

$$
3=3^{x^{2}-1}
$$

$$
2^{2 x-2}=2^{3}
$$

b) No solution, e^{x} will always give a positive result.

$$
3^{1}=3^{x^{2}-1}
$$

$$
2 x=5
$$

c) $3^{x}=\frac{1}{9}$

$$
4-1=3^{x^{2}-1}
$$

$$
2 x-2=3
$$

$$
\begin{equation*}
1=x^{2}-1 \tag{1}
\end{equation*}
$$

$$
3^{x}=\frac{1}{3^{2}}
$$

g) $6^{2 x-1}=6^{2}$

$$
2 x-1=2
$$

$x^{2}=2$
$x=\frac{5}{2}$

$$
3^{x}=3^{-2}
$$

$$
\text { so } x=-2
$$

d) $9^{x}=27$

$$
2 x=3
$$

$\left(3^{2}\right)^{x}=3^{3} \begin{gathered}\text { Reduce to common } \\ \text { a base }\end{gathered}$
$3^{2 x}=3^{3}$
$2 x=3$
$x=\frac{3}{2}$
e) $e^{0}=1$, so $x=0$
3. Draw a sketch of the function $y=a^{x}$, if $a>1$. Make a list of features that all graphs of this type have in common.

- When $x=0, y=1$ (because $a^{0}=1$)
- When x is a large negative number, y 's a small positive number (horizontal asymptote at $y=0$ on the left)
- When x is a la ge positive number, y is an even bigger positive number (y grows fast on the right side of the graph)
- y is always positive

4. Simplify the expression $\frac{2 e^{\frac{5 x}{3}}+e^{\frac{2 x}{3}}}{2 e^{2 x}+e^{x}}$, by first factoring out the greatest common factor from the numerator and from the denominator.
$\frac{2 e^{\frac{5 x}{3}}+e^{\frac{2 x}{3}}}{2 e^{2 x}+e^{x}}=\frac{e^{2 x / 3}\left(2 e^{\frac{3 x}{3}}+1\right)}{e^{x}\left(2 e^{x}+1\right)}=\frac{\left.e^{2 x / 3}\left(2 e^{x}+1\right)\right)^{\prime \prime}}{e^{x}\left(2 e^{x}+1\right)}=\frac{e^{2 x / 3}}{e^{x}}=\frac{1}{e^{x / 3}}$
5. Use properties of exponents to simplify the expression $\frac{4 e^{x} \cdot 4^{7 x}}{e^{3-x}}$

$$
\frac{4 e^{x} \cdot 4^{7 x}}{e^{3-x}}=\frac{e^{x}}{e^{3-x}} \cdot\left(4 \cdot 4^{7 x}\right)=e^{x-(3-x)} \cdot 4^{1+7 x}=e^{2 x-3} \cdot 4^{7 x+1}
$$

