Logarithms Problem Set

Attempt the following problems without using a calculator.

1. Convert the exponential equation to a logarithmic equation, or vice versa:

Ex.	$27^{2/3} = 9$	$\log_{27}(9) = \frac{2}{3}$
(a)	$4^{3/2} = 8$	
(b)	$4^x = \frac{1}{16}$	
(c)	$e^3 = y$	
(d)		$\ln(e) = 1$
(e)		$\log_a(3) = 6$
(f)	$e^x = 8$	
(g)		$\log_2(-5) = y$

2. Find the value of:

(a)
$$\log_7\left(\frac{1}{7}\right)$$

(e)
$$\ln(e^{x^2-4})$$

(i)
$$\log_4(4)$$

(m)
$$e^{\ln(1)}$$

(b)
$$\log_{\frac{1}{4}} 2$$

(f)
$$5^{2\log_5(3)}$$

(j)
$$\ln(e)$$

(n)
$$e^{\ln(-6)}$$

(c)
$$\log_a(a)$$

(g)
$$\log_4 1$$

(k)
$$\ln(4e)$$

(o)
$$\log_4(-8)$$

(d)
$$\ln(0)$$

(h)
$$ln(1)$$

(1)
$$\ln(e+4)$$

(p)
$$\log_2(4^x)$$

3. Solve for *x*:

(a)
$$e^x = 9$$

(d)
$$2^x = \frac{1}{9}$$

(g)
$$e^{4x+3} = 2$$

(b)
$$e^x = -1$$

(e)
$$\log_x(4) = 9$$

(h)
$$2e^{3x+5} = 7$$

(c)
$$2^x = 0$$

(f)
$$3^{x-5} = 4^x$$

(i)
$$3e^{x+1} = 2e^{2x}$$

4. Suppose the graph of $y = a^x$ has the following properties:

- \bullet Passes through the point (2,3)
- ullet On the left-hand side of the graph (when x-is a large negative number), the y-values are small positive numbers
- (a) Sketch the graph of $\log_a(x)$.
- (b) What is the value of a?

5. If $a^x = 3$, find the value of the following. (In some cases your answer will involve a).

(a)
$$a^{3x}$$

(b)
$$a^{x-1}$$

(c)
$$a^{4x+1}$$

(d)
$$4a^{-\frac{x}{2}}$$

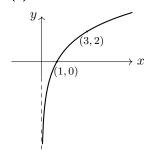
6. Factor $e^{4x} - 4^{2x}$ as a difference of squares.

Solutions

1.

Ex.	$27^{2/3} = 9$	$\log_{27}(9) = \frac{2}{3}$
(a)	$4^{3/2} = 8$	$\log_4\left(8\right) = \frac{3}{2}$
(b)	$4^x = \frac{1}{16}$	$\log_4\left(\frac{1}{16}\right) = x$
(c)	$e^3 = y$	ln(y) = 3
(d)	$e^1 = e$	$\ln(e) = 1$
(e)	$a^6 = 3$	$\log_a(3) = 6$
(f)	$e^x = 8$	ln(8) = x
(g)	$2^y = -5$	$\log_2(-5) = y$

- 2.
 - (a) -1(b) $-\frac{1}{2}$
 - (c) 1
 - (d) undefined (logarithms can only accept positive values)
 - (e) $x^2 4$
 - **(f)** 9


- (g) 0
- **(h)** 0
- (i) 1
- (j) 1
- (k) ln(4) + 1
- (l) cannot be further simplified

- (m) 1
- (n) undefined ($e^{()}$ and $\ln()$ would cancel each other out, but $\ln(-6)$ is not defined in the first place)
- (o) undefined (logarithms can only accept **positive** values)
- (p) 2x

- 3. (a) ln(9)
 - (b) no solution
 - (c) no solution
 - (d) $\log_2\left(\frac{1}{9}\right)$ or $-\log_2(9)$

- (h) $\frac{\ln(\frac{7}{2}) 5}{3}$
- (i) $\ln\left(\frac{3}{2}\right) + 1$

4. (a)

(b) $a = \sqrt{3}$

- 5. (a) $3^3 = 27$

- (b) $3 \cdot a^{-1} = \frac{3}{a}$ (c) $3^4 \cdot a = 81a$ (d) $4(3)^{-1/2} = \frac{4}{\sqrt{3}}$
- 6. $e^{4x} 4^{2x} = (e^{2x})^2 (4^x)^2 = (e^{2x} 4^x)(e^{2x} + 4^x)$