Solutions to Logarithm Problem Set

1. Convert the exponential equation to a logarithmic equation, or vice versa:

2. Find the value of:

(a) $\log _{7}\left(\frac{1}{7}\right)$
(e) $\ln \left(e^{x^{2}-4}\right)$
(i) $\log _{4}(4)$
(m) $e^{\ln (1)}$
(b) $\log _{\frac{1}{4}} 2$
(f) $5^{2 \log _{5}(3)}$
(j) $\ln (e)$
(n) $e^{\ln (-6)}$
(c) $\log _{a}(a)$
(g) $\log _{4} 1$
(k) $\ln (4 e)$
(o) $\log _{4}(-8)$
(d) $\ln (0)$
(h) $\ln (1)$
(l) $\ln (e+4)$
(p) $\log _{2}\left(4^{x}\right)$
a) $7^{-1}=\frac{1}{7}$, so $\log _{7}\left(\frac{1}{7}\right)=-1 \quad$ g) $4^{0}=1$, so
b) $\left(\frac{1}{4}\right)^{1 / 2}=\sqrt{\frac{1}{4}}=\frac{1}{2}$
so $\left(\frac{1}{4}\right)^{-1 / 2}=\left(\frac{1}{2}\right)^{-1}=2$
so $\log _{\frac{1}{4}}(2)=-\frac{1}{2}$
c) $a^{\prime}=a$, so $\log _{a}(a)=11$
a) $e^{?}$ always has a positive value,,$\left.j\right) e^{\prime}=e$, so
so $\ln (0)$ is undefined.
e) Method 1

By properties \& logarithms,
$\ln \left(e^{x^{2}-4}\right)=\left(x^{2}-4\right) \ln (e)=1$
$=x^{2}-4$
Method 2
$\ln \left(e^{x^{2}-4}\right)$ asks the question
$\ln (e)=11$
1 property of logarithms
($k) \ln (4 e)=\ln (4)+\ln (e)$
$1 \quad=\begin{gathered}\frac{\ln (4)+1}{(\text { Cont be be tether }} \text { Simplified) }\end{gathered}$
11) $\begin{aligned} & \text { Comet be Pother } \\ & \text { simplified }\end{aligned}$
lm) Method 1
So it's clear the answer is $x^{2}-4$

1. f loanathms

By tremerse redtuten.
h) $e^{0}=1$, so
i) $4^{\prime}=4,50$
$1 \log _{4}(4)=11$
$\log _{4}(1)=0$
1
n) This is undefined, since $\ln (x)$ is only defined 1 for positive x-values.
0) This is undefined,
| since $\ln (x)$ is only defined for positive
$\mid x$-values.
pp) $\log _{2}\left(4^{x}\right)$ is asking: $2^{?}=4^{x}$
I Notice that
$4^{x}=\left(2^{2}\right)^{x}$

$$
-n^{2 x}
$$

$$
e^{?}=e^{x^{2}-4}
$$

So it's clear the answer is $x^{2}-4$.
f) $\begin{aligned} 5^{2 \log _{5}(3)} & =5^{\text {Propecty of }}{ }^{\log _{5}\left(3^{2}\right)} \\ & =3^{2}\end{aligned}$

Im) Method I
By the inverse relation,

$$
\left.e^{\ln (1)}=1\right]
$$

Method 2

$$
1 e^{\ln (1)}=e^{0}=1
$$

$$
\begin{aligned}
4^{x} & =\left(2^{2}\right)^{x} \\
& =2^{2 x}
\end{aligned}
$$

so

$$
\log _{2}\left(4^{x}\right)=2 x
$$

3. Solve for x :
(a) $e^{x}=9$
(d) $2^{x}=\frac{1}{9}$
(g) $e^{4 x+3}=2$
(b) $e^{x}=-1$
(e) $\log _{x}(4)=9$
(h) $2 e^{3 x+5}=7$
(c) $2^{x}=0$
(f) $3^{x-5}=4^{x}$
(i) $3 e^{x+1}=2 e^{2 x}$
a) $\ln \left(e^{x}\right)=\ln (9)$
e) $x^{\log _{x}(4)}=x^{a}$

$$
x=9
$$

b) e^{x} will always give a positive result. So
no solution.
c) 2^{x} will always give a positive result. So
no solution.
d) $\log _{2}\left(2^{x}\right)=\log _{2}\left(\frac{1}{9}\right)$
$\begin{aligned} & \text { hversely } \\ & \text { relation }\end{aligned} x=\log _{2}\left(\frac{1}{9}\right)$

$$
x=-\log _{2}(9)^{\begin{array}{r}
\text { or } \\
\frac{1}{9}=9^{-1} \\
1
\end{array}} \begin{aligned}
& x \ln (3)-x \ln (4)=5 \ln (3) \\
& x(\ln (3)-\ln (4))=5 \ln (3) \mid
\end{aligned}
$$

$$
x=\frac{5 \ln (3)}{\ln (3)-\ln (4)}
$$

$$
\begin{aligned}
& \text { i) } \ln \left(3 e^{x+1}\right)=\ln \left(2 e^{2 x}\right) \quad \begin{array}{l}
\text { Propecty } \\
\text { of } \\
\text { ologarithms }
\end{array} \\
& \ln (3)+\sqrt{\ln \left(e^{x+1}\right)}=\ln (2)+\underbrace{\ln \left(e^{(2 x)}\right)}_{\text {lnverse proerty }} \\
& \ln (3)+(x+1) \underbrace{\ln (e)}_{=1}=\ln (2)+2 x \\
& \ln (3)+x+1=\ln (2)+2 x \\
& \ln (3)+1-\ln (2)=2 x-x \\
& x=\underbrace{\ln (3)-\ln (2)}_{\text {or }}+1 \\
& x=\ln \left(\frac{3}{2}\right)+1
\end{aligned}
$$

4. Suppose the graph of $y=a^{x}$ has the following properties:

- Passes through the point $(2,3)$
- On the left-hand side of the graph (when x-is a large negative number), the y-values are small positive numbers
(a) Sketch the graph of $\log _{a}(x)$.
(b) What is the value of a ?

$$
\text { b) } \begin{aligned}
& \sqrt{3}=\sqrt{a^{2}} \\
& a=\sqrt{3} \\
& \text { (a has to be positive, } \\
& \text { so we don't include- }-\sqrt{3} \\
& \text { as a possible answer) }
\end{aligned}
$$

5. If $a^{x}=3$, find the value of the following. (In some cases your answer will involve a).
(a) $a^{3 x}$
$a^{3 x}=\left(a^{x}\right)^{3}$
$=3^{3}$
$=27$
(b) a^{x-1}
(c) $a^{4 x+1}$
$\begin{aligned} a^{4 x+1} & =a^{4 x} \cdot a^{1} \\ & =\left(a^{x}\right)^{4} \cdot a \\ & =3^{4} \cdot a \\ & =81 a\end{aligned}$
(d) $4 a^{-\frac{x}{2}}$
$4 a^{-x / 2}=4\left(a^{x}\right)^{-1 / 2}$

$$
\begin{aligned}
& =4(3)^{-1 / 2} \\
& =4 \cdot \frac{1}{3^{1 / 2}} \\
& =\frac{4}{\sqrt{3}} \text { or } \frac{4 \sqrt{3}}{3}
\end{aligned}
$$

6. Factor $e^{4 x}-4^{2 x}$ as a difference of squares.

$$
\begin{aligned}
e^{4 x}-4^{2 x} & =\left(e^{2 x}\right)^{2}-\left(4^{x}\right)^{2} \\
& =\frac{\left(e^{2 x}-4^{x}\right)\left(e^{2 x}+4^{x}\right)}{\text { you can actually go a bit further : }} \\
& =\left(e^{2 x}-\left(2^{2}\right)^{x}\right)\left(e^{2 x}+4^{x}\right) \\
& =\left(\left(e^{x}\right)^{2}-\left(2^{x}\right)^{2}\right)\left(e^{2 x}+4^{x}\right) \\
& =\left(e^{x}-2^{x}\right)\left(e^{x}+2^{x}\right)\left(e^{2 x}+4^{x}\right)
\end{aligned}
$$

