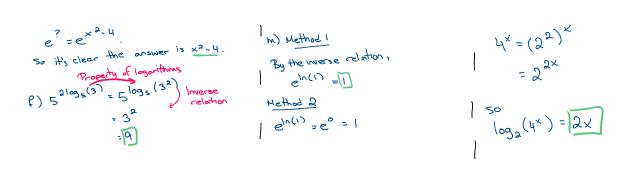
Solutions to Logarithm Problem Set

1. Convert the exponential equation to a logarithmic equation, or vice versa:

Ex.	$27^{2/3} = 9$	$\log_{27}(9) = \tfrac{2}{3}$
(a)	$4^{3/2} = 8$	log (8) = 3/2 -
(b)	$4^x = \frac{1}{16}$	$\log_{4}\left(\frac{1}{16}\right) = \times \left(\text{By the way, } \frac{1}{16} = 4^{-2}, \\ \mathbf{y} = \frac{1}{16} \qquad \text{so } \times = -2\right)$
(c)	$e^3=y$	In(y) = 3 (loge is typically written as the just log)
(d)	e "	$\log e^{-1} \ln(e) = 1$
(e)	$\alpha^{L} = 3$	$\log_{a}(3) = 6$
(f)	$e^x = 8$	n(8) = X
(g)	2 ^y = -5 to undefined ; y does not ex	$\log(-5) = y$

2. Find the value of:

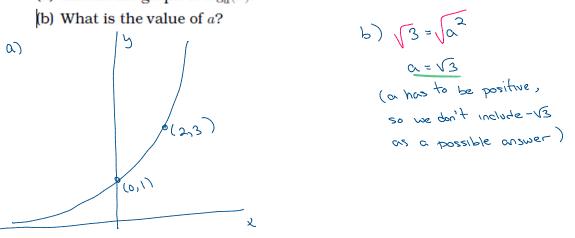


3. Solve for *x*:

(a)
$$e^{x} = 9$$
 (d) $2^{x} = \frac{1}{9}$ (g) $e^{4x+3} = 2$
(b) $e^{x} = -1$ (e) $\log_{x}(4) = 9$ (h) $2e^{3x+5} = 7$
(c) $2^{x} = 0$ (f) $3^{x-5} = 4^{x}$ (j) $3e^{x+1} = 2e^{2x}$
(k) $\ln(e^{x}) = \ln(q)$ (k) $x^{x-5} = 4^{x}$ (j) $3e^{x+1} = 2e^{2x}$
(k) $\ln(e^{x}) = \ln(q)$ (k) $x^{x-5} = 4^{x}$ (j) $3e^{x+5} = 7$
(k) $\ln(e^{x}) = \ln(2)$ (k) $x = \frac{1}{2}$ (k) $x = \frac{1}{2}$ (k) $x = \frac{1}{2}$
(k) e^{x} will always give (k) $(4)^{3} = (x^{2})^{3}$ (k) $2e^{3x+5} = 7$
(k) $e^{3x+5} = \frac{7}{2}$
(k) $\ln(e^{3x+5}) = \ln(\frac{7}{2})$
(k) $\ln(e^{3x+5}) = \ln(\frac{7}{2})$
(k) $\ln(2^{x-5}) = \ln(4x^{2})$ (k) $x = \frac{1}{2} + \frac{1}{2} +$

- 4. Suppose the graph of $y = a^x$ has the following properties:
 - Passes through the point (2,3)
 - On the left-hand side of the graph (when *x*-is a large negative number), the *y*-values are small positive numbers
 - (a) Sketch the graph of $\log_a(x)$.

Ň



5. If $a^x = 3$, find the value of the following. (In some cases your answer will involve *a*).

(a)
$$a^{3x}$$

 $a^{3x} = (a^{x})^{3}$
 $= 3^{3}$
 $= \sqrt{27}$
(b) a^{x-1}
 $a^{x-1} = \frac{a^{x}}{a^{x}} = 3^{3}$
 $= \sqrt{27}$
(c) a^{4x+1}
 $a^{4x+1} = a^{4x} \cdot a^{1}$
 $a^{4x+1} = a^{4x} \cdot a^{1}$
 $= (a^{x})^{4} \cdot a$
 $= (a^{x})^{4} \cdot a$
 $= 3^{4} \cdot a$
 $= \sqrt{3}^{4} \cdot a$
 $= \sqrt{3}^{4}$

.

6. Factor $e^{4x} - 4^{2x}$ as a difference of squares.

$$e^{4x} - 4^{2x} = (e^{2x})^{2} - (4^{x})^{2}$$

$$= (e^{2x} - 4^{x})(e^{2x} + 4^{x})$$

$$= (e^{2x} - (4^{x}))(e^{2x} + 4^{x})$$

$$= (e^{2x} - (2^{x})^{x})(e^{2x} + 4^{x})$$

$$= ((e^{x})^{2} - (2^{x})^{2})(e^{2x} + 4^{x})$$

$$= (e^{x} - 2^{x})(e^{x} + 2^{x})(e^{2x} + 4^{x})$$