Trigonometry - The Unit Circle

For a video explanation, click here.
Here is the version of the unit circle that you've probably seen before:

The unit circle is a circle of radius 1 , centered at $(0,0)$. It is used as a way to keep track of sine and cosine values of important angles. If you take any point P around the the unit circle and form the right triangle connecting that point to the origin and to the x-axis, you have:

$$
\begin{aligned}
\sin (\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }}=\frac{y \text {-coordinate }}{1}=y \text {-coordinate } \\
\text { and } \\
\cos (\theta)=\frac{\text { Adjacent }}{\text { Hypotenuse }}=\frac{x \text {-coordinate }}{1}=x \text {-coordinate }
\end{aligned}
$$

So for any point P on the unit circle, the y-coordinate is equal to $\sin (\theta)$ and the x-coordinate is equal to $\cos (\theta)$, where θ is the angle between the positive x-axis and the line which corrects the point P to the center of the circle:

In the Science program at John Abbott, you will need to be able to find the values of the trigonometric functions at these important angles without using a calculator or notes. To find them using the unit circle, we separate the job into two tasks: first locate the angle on the circle, and then determine the $x(\cos)$ or $y(\sin)$-value.

When you count angles around the unit circle, you always start on the positive x-axis, and go counterclockwise (unless the angle is negative, in which case you go the opposite way.)

One full turn around the circle is 2π radians, which means that each half-circle has π radians. That means that each quarter circle has $\frac{\pi}{2}$ radians:

We can know the coordinates of these points from the fact that the circle has radius 1 . For any multiple of $\frac{\pi}{2}$, simply count around the circle counter-clockwise for the corresponding number of quarter-circles.

That takes care of multiples of $\frac{\pi}{2}$ or π. For the rest, instead of trying to memorize the whole circle, you can divide the unit circle into two cases:

Finding the positions: Each half of the circle has π radians, so if you divide the top and bottom halves of the unit circle into 4 wedges each, then every wedge covers $\frac{\pi}{4}$ radians. So to locate a multiple of $\frac{\pi}{4}$, divide each half into 4 wedges, and count counterclockwise.

Values of \sin and cos: At odd multiples of $\frac{\pi}{4}$, the values of \sin and \cos are always $\pm \frac{\sqrt{2}}{2}$. So you just have to determine whether the value of $\frac{\sqrt{2}}{2}$ is positive or negative. For this, just remember that \cos is the x-value, \sin is the y-value, and check whether that value is positive or negative in the quadrant you're in.

Exercise Find the following values, by first locating the angle on the unit circle:

Solution
(a)
(a) $\sin \left(\frac{3 \pi}{4}\right)$
(b) $\cos \left(\frac{7 \pi}{4}\right)$
(c) $\cos \left(\frac{9 \pi}{4}\right)$
(d) $\sin \left(-\frac{\pi}{4}\right)$
$\sin (\theta)$ is given by the y-value, which is positive in this position, so $\sin \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}$.
$\cos (\theta)$ is given by the x-value, which is positive in this position, so $\cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}$.
$\cos (\theta)$ is given by the x-value, which is positive in this position, so $\cos \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}$.
$\sin (\theta)$ is given by the y-value, which is negative in this position, so $\sin \left(-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$.

Multiples of $\frac{\pi}{6}$:

Finding the positions: First, keep in mind that any multiple of $\frac{\pi}{3}$ can be rewritten as a multiple of $\frac{\pi}{6}$, So for any question of the type $\frac{k \pi}{3}$, start by converting to a multiple of $\frac{\pi}{6}$.
Next, divide the top and bottom halves of the unit circle each in to 6 equal wedges. Each wedge is worth $\frac{p i}{6}$ radians. So to find a multiple of $\frac{\pi}{6}$, just count these wedges, moving counterclockwise for positive angles, and clockwise for negative angles.

Values of \sin and cos: The coordinates at these points are always $\left(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$, or $\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right)$. So to determine the sin or \cos value, you need to determine whether it's positive or negative, and whether it's $\frac{1}{2}$ or $\frac{\sqrt{3}}{2}$.

We can determine the sign of the $x-$ or y - value from the quadrant of the graph we're in. Finally, just keep in mind that $\frac{1}{2}$ is smaller than $\frac{\sqrt{3}}{2}$ (since 1 is smaller than $\sqrt{3}$). So, locate the position of the angle, and look at whether the x-value is larger than y, or vice versa. The longer side is $\frac{\sqrt{3}}{2}$, the shorter one is $\frac{1}{2}$.

Example To find $\sin \left(\frac{4 \pi}{3}\right)$, first I find the angle on the unit circle, by converting $\frac{4 \pi}{3}$ to $\frac{8 \pi}{6}$, dividing each half of the circle into 6 wedges, and counting 8 wedges counterclockwise:

In this position, y is negative and y is larger than x, so the y-value has to be $-\frac{\sqrt{3}}{2}$. So $x \sin \left(\frac{4 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$.

Exercise Find the following values, by first locating the angle on the unit circle:
(a) $\cos \left(\frac{5 \pi}{6}\right)$
(b) $\cos \left(\frac{2 \pi}{3}\right)$
(c) $\sin \left(-\frac{5 \pi}{3}\right)$
(d) $\sin \left(\frac{7 \pi}{3}\right)$
Solution

Other Trig Functions: To find values of $\tan (\theta), \cot (\theta), \sec (\theta)$ or $\csc (\theta)$, just convert them to expressions about sin and cos, and follow the same method as above.

Recall:

$$
\begin{array}{cc}
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)} & \cot (\theta)=\frac{\cos (\theta)}{\sin (\theta)} \\
\sec (\theta)=\frac{1}{\cos (\theta)} & \csc (\theta)=\frac{1}{\sin (\theta)}
\end{array}
$$

Example If I need to find $\tan \left(\frac{5 \pi}{3}\right)$, I find the angle $\frac{5 \pi}{3}=\frac{10 \pi}{6}$ on the unit circle, and determine the values of both sin and cos:

In this position, x is positive and y is negative, and y is larger than x. So $\sin \left(\frac{5 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$, and $\cos \left(\frac{5 \pi}{3}\right)=\frac{1}{2}$.

So then $\tan \left(\frac{5 \pi}{3}\right)=\frac{\sin \left(\frac{5 \pi}{3}\right)}{\cos \left(\frac{5 \pi}{3}\right)}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3}$

