Trigonometry - The Unit Circle

For a video explanation, click here.

Here is the version of the unit circle that you've probably seen before:

The unit circle is a circle of radius 1, centered at (0,0). It is used as a way to **keep track of sine** and cosine values of important angles. If you take any point *P* around the the unit circle and form the right triangle connecting that point to the origin and to the *x*-axis, you have:

So for any point *P* on the unit circle, the *y*-coordinate is equal to $\sin(\theta)$ and the *x*-coordinate is equal to $\cos(\theta)$, where θ is the angle between the positive *x*-axis and the line which corrects the point *P* to the center of the circle:

In the <u>Science</u> program at John Abbott, you will need to be able to find the values of the trigonometric functions at these important angles *without* using a calculator or notes. To find them using the unit circle, we separate the job into two tasks: first locate the angle on the circle, and then determine the x (cos) or y (sin)-value.

When you count angles around the unit circle, you always **start on the positive** x-**axis**, and go **counterclockwise** (unless the angle is negative, in which case you go the opposite way.)

One full turn around the circle is 2π radians, which means that each half-circle has π radians. That means that each *quarter* circle has $\frac{\pi}{2}$ radians:

We can know the coordinates of these points from the fact that the circle has radius 1. For any multiple of $\frac{\pi}{2}$, simply count around the circle counter-clockwise for the corresponding number of quarter-circles.

That takes care of multiples of $\frac{\pi}{2}$ or π . For the rest, instead of trying to memorize the whole circle, you can divide the unit circle into two cases:

John Abbott College

Multiples of $\frac{\pi}{4}$:

Finding the positions: Each half of the circle has π radians, so if you divide the top and bottom halves of the unit circle into 4 wedges each, then every wedge covers $\frac{\pi}{4}$ radians. So to locate a multiple of $\frac{\pi}{4}$, divide each half into 4 wedges, and count counterclockwise.

Values of sin **and** cos: At odd multiples of $\frac{\pi}{4}$, the values of sin and cos are always $\pm \frac{\sqrt{2}}{2}$. So you just have to determine whether the value of $\frac{\sqrt{2}}{2}$ is positive or negative. For this, just remember that cos is the *x*-value, sin is the *y*-value, and check whether that value is positive or negative in the quadrant you're in.

Multiples of $\frac{\pi}{6}$:

Finding the positions: First, keep in mind that any multiple of $\frac{\pi}{3}$ can be rewritten as a multiple of $\frac{\pi}{6}$. So for any question of the type $\frac{k\pi}{3}$, start by converting to a multiple of $\frac{\pi}{6}$.

Next, divide the top and bottom halves of the unit circle each in to 6 equal wedges. Each wedge is worth $\frac{p_i}{6}$ radians. So to find a multiple of $\frac{\pi}{6}$, just count these wedges, moving counterclockwise for positive angles, and clockwise for negative angles.

Values of sin **and** cos: The coordinates at these points are always $(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2})$, or $(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2})$. So to determine the sin or cos value, you need to determine whether it's positive or negative, and whether it's $\frac{1}{2}$ or $\frac{\sqrt{3}}{2}$.

We can determine the sign of the x- or y- value from the quadrant of the graph we're in. Finally, just keep in mind that $\frac{1}{2}$ is smaller than $\frac{\sqrt{3}}{2}$ (since 1 is smaller than $\sqrt{3}$). So, locate the position of the angle, and look at whether the x-value is larger than y, or vice versa. The longer side is $\frac{\sqrt{3}}{2}$, the shorter one is $\frac{1}{2}$.

Example To find $\sin\left(\frac{4\pi}{3}\right)$, first I find the angle on the unit circle, by converting $\frac{4\pi}{3}$ to $\frac{8\pi}{6}$, dividing each half of the circle into 6 wedges, and counting 8 wedges counterclockwise:

In this position, y is negative and y is larger than x, so the y-value has to be $-\frac{\sqrt{3}}{2}$. So $\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.

Exercise Find the following values, by first locating the angle on the unit circle:

(a)
$$\cos\left(\frac{5\pi}{6}\right)$$
 (b) $\cos\left(\frac{2\pi}{3}\right)$ (c) $\sin\left(-\frac{5\pi}{3}\right)$ (d) $\sin\left(\frac{7\pi}{3}\right)$

Other Trig Functions: To find values of $tan(\theta)$, $cot(\theta)$, $sec(\theta)$ or $csc(\theta)$, just convert them to expressions about sin and cos, and follow the same method as above.

Example If I need to find $\tan\left(\frac{5\pi}{3}\right)$, I find the angle $\frac{5\pi}{3} = \frac{10\pi}{6}$ on the unit circle, and determine the values of both sin and cos :

In this position, x is positive and y is negative, and y is larger than x. So $\sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$, and $\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2}$. So then $\tan\left(\frac{5\pi}{3}\right) = \frac{\sin\left(\frac{5\pi}{3}\right)}{\cos\left(\frac{5\pi}{2}\right)} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$