201-203-RE - Practice Set \#13: Consumer and Producer Surplus

(1) The demand function for a product is $p=\sqrt{1225-0.15 x}$. If the equilibrium price is $\$ 25$, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(2) The demand function for a product is $p=34-x^{2}$. If the equilibrium price is $\$ 9$, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(3) The supply function for a product is $p=0.06 x^{2}+10 x+3$. If the equilibrium quantity is 10 units, sketch the region whose area represents the producer surplus, and find the producer surplus.
(4) The demand function for a product is $p=1000 e^{-0.01 x}$. If the equilibrium quantity is 25 units, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(5) The supply function for a product is $p=0.08 x^{3}+100$. If the equilibrium quantity is 20 units, sketch the region whose area represents the producer surplus, and find the producer surplus.
(6) The demand function for a product is $p=\frac{100}{10+0.05 x}$. If the equilibrium quantity is 200 units, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(7) The supply function for a product is $p=100 \sqrt{4+3 x}$. If the equilibrium quantity is 4 units, sketch the region whose area represents the producer surplus, and find the producer surplus.
(8) The supply function for a product is $p=4 x^{2}+2 x+2$. If the equilibrium price is $\$ 422$, sketch the region whose area represents the producer surplus, and find the producer surplus.
(9) The demand function for a product is $p=\frac{200}{x+2}$. If the equilibrium quantity is 8 units, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(10) The supply function for a product is $p=10 e^{x / 3}$. If the equilibrium quantity is 15 units, sketch the region whose area represents the producer surplus, and find the producer surplus.
(11) The demand function for a product is $p=81-x^{2}$, and the supply function is $p=x^{2}+4 x+11$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(12) The supply function for a product is $p=0.01 x^{3}+50$. If the equilibrium quantity is 5 units, sketch the region whose area represents the producer surplus, and find the producer surplus.
(13) The demand function for a product is $p=-x^{2}+250$, and the supply function is $p=x^{2}+50$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(14) The demand function for a product is $p=-x^{2}+400$, and the supply function is $p=x^{2}+34 x$. Find the equilibrium point, sketch the region whose area represents the producer surplus, and find the producer surplus.
(15) The demand function for a product is $p=\frac{100}{\sqrt{x+25}}$, and the supply function is $p=\sqrt{x+25}$. Find the equilibrium point, sketch the region whose area represents the producer surplus, and find the producer surplus.
(16) The demand function for a product is $p=\frac{250}{x+20}$, and the supply function is $p=x+5$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(17) The demand function for a product is $p=-x^{2}+24$, and the supply function is $p=x^{2}+2 x$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(18) The demand function for a product is $p=-x^{2}+100$, and the supply function is $p=2 x+20$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(19) The demand function for a product is $p=-x^{2}+100$, and the supply function is $p=3 x+30$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.

ANSWERS:

(1) $\$ 21111.11$
(2) $\$ 83.33$
(3) $\$ 540$
(4) $\$ 2649.90$
(5) $\$ 9600$
(6) $\$ 386.29$
(7) $\$ 355.56$
(8) $\$ 2766.67$
(9) $\$ 161.89$
(10) $\$ 17839.58$
(11) $\mathrm{E}=(5,56), \mathrm{CS}=\$ 83.33$
(12) $\$ 4.69$
(13) $\mathrm{E}=(10,150), \mathrm{CS}=\$ 666.67$
(14) $\mathrm{E}=(8,336), \mathrm{PS}=\$ 1429.33$
(15) $\mathrm{E}=(75,10), \mathrm{PS}=\$ 166.67$
(16) $\mathrm{E}=(5,10), \mathrm{CS}=\$ 5.79$
(17) $\mathrm{E}=(3,15), \mathrm{CS}=\$ 18, \mathrm{PS}=\$ 27$
(18) $\mathrm{E}=(8,36), \mathrm{CS}=\$ 341.33, \mathrm{PS}=\$ 64$
(19) $\mathrm{E}=(7,51), \mathrm{CS}=\$ 228.67, \mathrm{PS}=\$ 73.50$

