201-203-RE - Practice Set \#20: Applications of Geometric Series

(1) A deposit of 35 dollars is made at the beginning of each month, for a period of 4 years, in an account that pays 1.5% interest, compounded monthly. Find the balance in the account at the end of the 4 years.
(2) The annual net profit for a company, from 1995 to 2005 , can be approximated by the model $a_{n}=$ $10 e^{0.2 n}, n=1,2,3, \cdots, N$, where a_{n} is the annual net profit in millions of dollars, and n represents the year, with $n=1$ corresponding to 1995. Estimate the total net profit during this period.
(3) A deposit of 15 dollars is made at the beginning of each month, for a period of 5 years, in an account that pays 0.9% interest, compounded monthly. Find the balance in the account at the end of the 5 years.
(4) A deposit of 20 dollars is made every 3 months, for a period of 10 years, in an account that pays 1% interest, compounded quarterly. Find the balance in the account at the end of the 10 years.
(5) A deposit of $\$ 500$ can be made with two options: earn 2% interest, compounded quarterly for 3 years, or earn 1.5%, compounded monthly for 3 years. Find the balance after 3 years of both options.
(6) A deposit of $\$ 1200$ can be made with two options: earn 1.6% interest, compounded every 2 months for 5 years, or earn 2.3% interest, compounded semi-anually for 5 years. Find the balance after 5 years of both options.
(7) The annual net profit for a company, from 1995 to 2000, can be approximated by the model $a_{n}=5 e^{0.1 n}$, with $n=1,2,3, \cdots, N$, where a_{n} is the annual net profit (in millions of dollars), and n represents the year, with $n=1$ corresponding to 1995 . Estimate the total net profit earned during this period.
(8) To create a scholarship of $\$ 600$ that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 600 e^{-0.05 n}$ to determine the sum of money that has to be deposited in an account that earns 5% interest, compounded continuously. Find the amount of money that must be deposited.
(9) To create a scholarship of $\$ 1200$ that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 1200 e^{-0.03 n}$ to determine the sum of money that has to be deposited in an account that earns 3% interest, compounded continuously. Find the amount of money that must be deposited.
(10) A patient is given 50 mg of a drug daily, for a long period of time. The amount of drug left in the patient's body after n years is given by $\sum_{k=1}^{n} 50 e^{-k / 2}$. Find the amount of drug in the patient's system after 4 years and after 15 years.
(11) A deposit of 10 dollars is made at the beginning of each month, for a period of 6 years, into an account that pays 1% yearly interest, compounded 12 times per year. Find the bablance in the account at the end of the 6 years.
(12) The annual net profit for a company, from 1997 to 2003, can be approximated by the model $a_{n}=$ $15 e^{0.3 n}$, with $n=1,2,3, \cdots, N$, where a_{n} is the annual net profit (in millions of dollars), and n represents the year, with $n=1$ corresponding to 1997. Estimate the total net profit earned during this period.
(13) A deposit of 30 dollars is made at the beginning of each month, for a period of 7 years, into an account that pays 1.1% yearly interest, compounded 12 times per year. Find the bablance in the account at the end of the 7 years.
(14) The annual net profit for a company, from 1996 to 2001, can be approximated by the model $a_{n}=6 e^{0.05 n}$, with $n=1,2,3, \cdots, N$, where a_{n} is the annual net profit (in millions of dollars), and n represents the year, with $n=1$ corresponding to 1996. Estimate the total net profit earned during this period.
(15) A deposit of 50 dollars is made bi-weekly, for a period of 8 years, into an account that pays 1.3% yearly interest, compounded every two weeks. Find the balance inthe account at the end of the 8 years.
(16) A deposit of $\$ 700$ can be made with two options: account A earns 1.8% yearly interest, compounded every two weeks, and account B earns 2.1% yearly interest, compounded monthly. The amount will stay in the account for a period of 4 years. What would the balance be after the 4 years, for both accounts?
(17) A deposit of $\$ 1500$ can be made with two options: account A earns 1.4% yearly interest, compounded quarterly, and account B earns 1.9% yearly interest, compounded monthly. The amount will stay in the account for a period of 6 years. What would the balance be after the 6 years, for both accounts?
(18) To create a scholarship of $\$ 750$ that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 750 e^{-0.04 n}$ to determine the sum of money that has to be deposited in an account that earns 4% interest, compounded continuously. Find the amount of money that must be deposited.
(19) To create a scholarship of $\$ 1500$ that is to be awarded every year, we can use the series $\sum_{n=1}^{+\infty} 1500 e^{-0.035 n}$ to determine the sum of money that has to be deposited in an account that earns 3.5% interest, compounded continuously. Find the amount of money that must be deposited.
(20) A patient is given 40 mg of a drug daily, for a long period of time. The amount of drug left in the patient's body after n years is given by $\sum_{k=1}^{n} 40 e^{-k / 5}$. Find the amount of drug in the patient's system after 6 years and after 20 years.

In problems 21-34, geometric series to write the following repeating decimals as fractions.
(21) $4 . \overline{13}$
(23) $3 . \overline{09}$
(25) $5 . \overline{011}$
(27) $7.3 \overline{4}$
(29) $1 . \overline{06}$
(31) $8 . \overline{01}$
(33) $5 . \overline{25}$
(22) $6 . \overline{04}$
(24) $2 . \overline{02}$
(26) $10.2 \overline{3}$
(28) $20.0 \overline{21}$
(30) $2 . \overline{03}$
(32) $2 . \overline{22}$
(34) $12.30 \overline{2}$
(35) Valery would like to save $\$ 1400000$ for her retirement. Her account has an annual interest rate of 2.7%, compounded semi-annually. If Valery wants to retire in 40 years, how much should she be saving semi-annually?
(36) When she retires, Liu Zhang purchases an annuity which pays her $\$ 3000$ per month for 40 years. If the annuity earns 3.1% interest compounded monthly, what was the initial value of the investment?
(37) Sobolev would like to buy a $\$ 20000$ car, but he cannot afford to do so outright. He goes on the automaker's website and sees that he can expect to finance it at 3.5% interest compounded twice a month. If he chooses to finance the car for a six year term, what will his payments be, if he is paying twice per month?
(38) Suzana would like to save a $\$ 40000$ down payment for a house. If she can invest at 1.6% interest compounded weekly over ten years, how much should she save each week?
(39) Lewis-Charles is at the car dealership and is being told his new car will cost him $\$ 1000$ every two months for four years. If he financed at 0.9% interest compounded every two months, how much is the car (not including interest)?
(40) Chef Tony bought a commercial building that is worth $\$ 3000000$. He finances it on a 25 year term at 3.2% annual interest compounded semi-annually. What is his mortgage payment every 6 months?
(41) Jennifer wants to save $\$ 15000$ for a new car in eight years. If she can save at 1.1% interest compounded monthly, what should be her monthly deposit?
(42) Ichiban has $\$ 1800000$ saved when he retires. He uses all that money to purchase an annuity earning 2.6% interest compounded every two weeks that will pay him a lump sum every two weeks for 30 years. How much will he receive every two weeks?

ANSWERS:

(1) $\$ 1732.47$
(15) $\$ 10962.64$
(29) $35 / 33$
(2) $\$ 442.712$ millions
(16) $\$ 752.24$ or $\$ 761.28$
(30) $67 / 33$
(3) $\$ 920.89$
(17) $\$ 1631.20$ or $\$ 1680.98$
(31) 793/99
(4) $\$ 842.36$
(5) $\$ 530.84$ or $\$ 523.00$
(18) $\$ 18377.50$
(32) $20 / 9$
(19) $\$ 42111.52$
(33) 520/99
(6) $\$ 1299.81$ or $\$ 1345.36$
(20) 126.25 mg and 177.36 mg
(34) $2768 / 225$
(7) $\$ 43.195$ millions
(21) 409/99
(35) $\$ 9695.05$
(8) $\$ 11702.50$
(22) 598/99
(36) $\$ 824693.47$
(9) $\$ 39403.00$
(23) $34 / 11$
(37) $\$ 154.08$
(10) 66.64 mg and 77.03 mg
(11) $\$ 742.34$
(24) 200/99
(38) $\$ 70.92$
(25) 5006/999
(39) $\$ 23555.79$
(12) $\$ 414.738$ millions
(26) $307 / 30$
(40) $\$ 87620.56$
(13) $\$ 2620.71$
(27) $661 / 90$
(41) $\$ 149.41$
(14) $\$ 43.041$ millions
(28) $6607 / 330$
(42) $\$ 3324.62$

