Determine whether the following series converge or diverges. Justify your answers by referencing a test, and showing why that test may be applied. In the case of a convergent geometric or telescoping series, find the sum of the series.
(1) $\sum_{k=2}^{\infty} \frac{5}{\sqrt[4]{k^{3}}}$
(15) $\sum_{n=1}^{\infty} \frac{1}{(0.4)^{n}}$
(28) $\sum_{n=1}^{\infty} \frac{n-1}{n+1}$
(2) $\sum_{n=0}^{\infty}\left(\frac{6}{7}\right)^{n+1}$
(16) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n^{3}}}$
(29) $\sum_{k=1}^{\infty} \frac{4^{k+2}}{3^{2 k-1}}$
(3) $\sum_{k=1}^{\infty} \ln (k)$
(17) $\sum_{n=2}^{\infty} 3^{1+n} 5^{1-n}$
(30) $\sum_{n=1}^{\infty} \frac{n^{2}+n+1}{2 n^{2}-6}$
(4) $\sum_{n=0}^{\infty} \frac{1}{3 n+1}$
(18) $\sum_{n=5}^{\infty} \frac{(-1)^{n} 2^{n}}{n^{3}}$
(31) $\sum_{k=1}^{\infty} \frac{7}{3^{k}+2}$
(5) $\sum_{n=5}^{\infty} \frac{4^{n-1}}{3 n!}$
(19) $\sum_{n=1}^{\infty} \frac{n^{3}}{\sqrt{n^{6}+1}}$
(32) $\sum_{k=2}^{\infty} \frac{\ln (k)}{k}$
(6) $\sum_{n=4}^{\infty} \frac{36}{n^{2}-n-2}$
(20) $\sum_{n=0}^{\infty} \frac{n^{2}+1}{(n+2)!}$
(33) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$
(7) $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3^{n+1}}$
(21) $\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}$
(34) $\sum_{k=1}^{\infty}\left(\frac{1}{3^{k}}+\frac{1}{k^{3}}\right)$
(8) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$
(22) $\sum_{n=3}^{\infty} \frac{1}{n-2}$
(35) $\sum_{k=1}^{\infty} \frac{(k!)^{2}}{(2 k)!}$
(9) $\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n}\right)$
(23) $\sum_{k=1}^{\infty}\left(\frac{1}{3^{k}}-\frac{1}{3^{k+1}}\right)$
(36) $\sum_{k=1}^{\infty} \frac{(k+3)!}{3!k!4^{k}}$
(10) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}-\frac{1}{n^{4}}\right)$
(24) $\sum_{k=3}^{\infty} \frac{4}{k^{2}+5 k+6}$
(37) $\sum_{k=1}^{\infty} \frac{k^{2}}{k!}$
(11) $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+3\right)^{3 / 2}}$
(25) $\sum_{k=1}^{\infty} \frac{k}{4^{k}}$
(38) $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{1 \cdot 4 \cdot 7 \cdots(3 n-2)}$
(12) $\sum_{n=0}^{\infty} n(0.7)^{n}$
(26) $\sum_{k=1}^{\infty}\left(\frac{k}{100}\right)^{k}$
(39) $\sum_{k=2}^{\infty} k^{-\frac{2}{3}}$
(13) $\sum_{n=1}^{\infty} \frac{2^{n}}{5+3^{n+1}}$
(27) $\sum_{k=2}^{\infty}\left(\frac{-3}{4}\right)^{k}$
(40) $\sum_{k=2}^{\infty} \ln \left(1-\frac{1}{k^{2}}\right)$

ANSWERS:

(1) diverges by p-series
(4) diverges by integral test
(2) converges to 6 by geometric series
(5) converges by ratio test
(3) diverges by test for divergence
(6) converges to 13 by telescoping
(7) converges to $\frac{1}{5}$ by geometric series
(8) diverges by test for divergence or ratio test
(9) converges to -1 by telescoping
(10) converges by p-series
(11) converges by integral test
(12) converges by ratio test
(13) converges by ratio test
(14) diverges by p-series
(15) diverges by geometric series
(16) converges by integral test
(17) converges to $\frac{27}{2}$ by geometric series
(18) diverges by ratio test
(19) diverges by test for divergence
(20) converges by ratio test
(21) converges to $\frac{1}{3}$ by geometric series
(22) diverges by integral test
(23) converges to $\frac{1}{3}$ by geometric series
(24) converges to $\frac{4}{5}$ by telescoping series
(25) converges by ratio test
(26) diverges by divergence test
(27) converges to $\frac{9}{28}$ by geometric series
(28) diverges by test for divergence
(29) converges to $\frac{192}{5}$ by geometric series
(30) diverges by test for divergence
(31) converges by ratio test
(32) diverges by integral test
(33) diverges by p-series
(34) converges by geometric series and p-series
(35) converges by ratio test
(36) converges by ratio test
(37) converges by ratio test
(38) converges by ratio test
(39) diverges by p-series
(40) converges to $\ln \left(\frac{1}{2}\right)$ by telescoping series

