Use the limit definition of the derivative to find the equation of the tangent line to the graph of the function at the given point.
(1) $f(x)=6+x-3 x^{2}$ at $x=2$
(2) $f(x)=7 x^{2}-6 x+3$ at $x=-1$
(3) $f(x)=-2 x^{2}+3 x+2$ at $x=3$
(4) $f(x)=5 x^{2}-x+4$ at $x=-2$
(5) $f(x)=4 x^{2}+5 x-7$ at $x=-3$
(6) $f(x)=3 x^{2}+8 x-6$ at $x=1$
(7) $\quad f(x)=4-2 x-x^{2} \quad$ at $\quad x=1$
(8) $f(x)=2 x^{2}+4 x+1$ at $x=-2$
(9) $f(x)=-4 x^{2}+5 x+6$ at $x=-1$
(10) $\quad f(x)=3 x^{2}-7 x+2$ at $x=2$
(11) $f(x)=6 x^{2}-9 x+5$ at $x=3$
(12) $f(x)=5 x^{2}-3 x+6$ at $x=-3$
(13) $\quad f(x)=\frac{4}{x+1} \quad$ at $\quad x=3$
(14) $f(x)=6 \sqrt{x+2}$ at $x=2$
(15) $f(x)=\frac{2}{x^{2}-3} \quad$ at $\quad x=-2$
(16) $f(x)=\sqrt{x^{3}-4}$ at $x=2$

Find the slope of the tangent line to the graph of the given function at the given point.
(17) $f(x)=7 x^{2}-2 \sqrt{x}+\frac{16}{x}-12 \quad$ at $\quad x=4$
(19) $g(x)=\frac{4}{\sqrt[3]{x}}-12 x^{2}-6 \sqrt{x}+7$ at $x=1$
(21) $g(x)=6 x-\frac{15}{x^{4}}+4 x^{2}+13$ at $x=2$
(23) $f(x)=\left(x^{2}+1\right)\left(1-x^{3}\right) \quad$ at $\quad x=2$
(25) $f(x)=\left(x^{2}-2 x\right)\left(5-x+2 x^{2}\right)$ at $x=3$
(27) $f(x)=(2 x+\sqrt{x})\left(10 \sqrt{x}-3 x^{2}\right)$ at $\quad x=1$
(29) $\quad g(x)=\frac{6}{\left(2+x-x^{2}\right)^{3}} \quad$ at $\quad x=1$
(31) $g(x)=\frac{9}{\sqrt{2 x^{2}-4 x+3}}$ at $\quad x=-1$
(33) $g(x)=\sqrt[5]{x^{3}-3 x+3}$ at $x=-2$
(35) $g(x)=8 x^{4}-6 \sqrt[3]{x^{2}}-\frac{4}{x^{3}}+9$ at $x=-1$
(37) $g(x)=\frac{4}{\sqrt{x^{3}}}-12 \sqrt[3]{x^{4}}+32 x^{2}-25$ at $x=1$
(39) $g(x)=12 x-\frac{8}{x^{4}}+10 x^{3}-18$ at $x=-2$
(41) $f(x)=\left(4 x^{2}+3 x+1\right)(2+5 x)$ at $x=1$
(43) $f(x)=\left(2+3 x+x^{2}\right)\left(4 x^{2}-2 x+3\right) \quad$ at $\quad x=-1$
(45) $f(x)=(4 x-6 \sqrt{x})\left(5 x-x^{3}\right)$ at $x=1$
(18) $g(x)=6 x^{3}-4 \sqrt[3]{x}-\frac{3}{x^{2}}+3$ at $\quad x=-1$
(20) $g(x)=18 x^{4}+6 \sqrt[4]{x^{3}}-\frac{5}{x^{2}}+10 \quad$ at $\quad x=1$
(22) $g(x)=7 x+\frac{12}{x^{3}}-16 x^{2}+25$ at $x=-1$
(24) $\quad f(x)=\left(3 x^{2}+x+2\right)(1+3 x) \quad$ at $\quad x=-1$
(26) $f(x)=\left(5+x-x^{2}\right)\left(2 x^{2}-3 x+1\right)$ at $x=1$
(28) $\quad f(x)=(3 x-2 \sqrt{x})\left(x^{3}-x\right) \quad$ at $\quad x=4$
(30) $g(x)=\sqrt[3]{\left(4-4 x-x^{2}\right)^{4}} \quad$ at $\quad x=2$
(32) $g(x)=\left(x^{4}-2 x^{2}-9\right)^{4} \quad$ at $\quad x=2$
(34) $g(x)=5 x^{3}-4 \sqrt{x}+\frac{2}{\sqrt{x}}-8$ at $x=1$
(36) $g(x)=\frac{2}{\sqrt[3]{x^{5}}}+8 x^{1 / 2}-2 x^{4}+5$ at $x=1$
(38) $g(x)=3 x^{2}-\frac{5}{x^{2}}+5 x-20$ at $x=2$
(40) $f(x)=\left(x^{2}+x\right)\left(2-x^{2}\right)$ at $x=-2$
(42) $f(x)=\left(x-x^{3}\right)\left(1+x-x^{2}\right) \quad$ at $\quad x=-1$
(44) $f(x)=(4 x+2 \sqrt{x})\left(6 \sqrt{x}-4 x^{2}\right) \quad$ at $\quad x=4$
(46) $g(x)=\frac{4}{\left(3+2 x+x^{2}\right)^{2}} \quad$ at $\quad x=1$
(47) $g(x)=\sqrt[5]{\left(x^{3}-4 x+1\right)^{3}}$ at $x=2$
(48) $g(x)=\frac{12}{\sqrt{9-2 x-x^{2}}}$ at $x=-2$
(49) $g(x)=\left(8+5 x+4 x^{3}\right)^{5} \quad$ at $\quad x=-1$
(50) $g(x)=\sqrt[3]{2 x^{2}-6 x+1}$ at $x=3$

Find the equation of the tangent line to the graph of the function at the given point.
(51) $\quad f(x)=\frac{2 x}{x+3} \quad$ at $\quad x=-2$
(52) $\quad f(x)=\frac{1-3 x}{x-1} \quad$ at $\quad x=2$
(53) $\quad f(x)=\frac{2+\sqrt{x}}{2-\sqrt{x}} \quad$ at $\quad x=1$
(54) $\quad f(x)=\frac{4 \sqrt{x}}{x-3} \quad$ at $\quad x=9$
(55) $\quad f(x)=\frac{2 x+3}{4+\sqrt{x}} \quad$ at $\quad x=1$
(56) $\quad f(x)=\frac{3 x}{x-4} \quad$ at $\quad x=5$
(57) $\quad f(x)=\frac{2-5 x}{x-3} \quad$ at $\quad x=2$
(58) $\quad f(x)=\frac{\sqrt{x}+1}{3-\sqrt{x}} \quad$ at $\quad x=4$
(59) $\quad f(x)=\frac{3 \sqrt{x}}{2-x} \quad$ at $\quad x=1$
(60) $\quad f(x)=\frac{5 x-1}{2 \sqrt{x}-3} \quad$ at $\quad x=4$
(61) $\quad f(x)=\frac{x^{2}}{x-2} \quad$ at $\quad x=3$
(62) $\quad f(x)=\left(x^{3}-2 x^{2}+3 x-1\right)^{3 / 2} \quad$ at $\quad x=1$
(63) $f(x)=\left(4 x-x^{2}\right)\left(x^{3}+4\right) \quad$ at $\quad x=1$
(64) $f(x)=\frac{24}{\sqrt{x}}+\frac{16}{x^{2}}+3 x$ at $x=4$
(65) Given $f(x)=x^{3}+6 x^{2}-15 x+4$, find the $x$-value(s) such that the tangent line to the curve of $f(x)$ is horizontal.
(66) Find the point(s) on the curve of $f(x)=2 x^{3}+15 x^{2}-140 x+10$ such that the slope of the tangent line is 4 .
(67) Given $f(x)=\frac{x^{2}}{x+4}$, find the point(s) such that the tangent line to the curve of $f(x)$ is horizontal.
(68) Given $f(x)=\frac{\sqrt{x}}{x^{2}+3}$, find the point(s) such that the tangent line to the curve of $f(x)$ is horizontal.
(69) If $f(1)=5, f^{\prime}(1)=-2$ and $g(x)=x^{3} \cdot f(x)$, then find $g^{\prime}(1)$
(70) If $h(2)=4, h^{\prime}(2)=-3$ and $f(x)=\frac{2 h(x)}{x^{2}}$, then find $f^{\prime}(2)$
(71) If $g(-1)=-4, g^{\prime}(1)=7$ and $f(x)=g\left(x^{2}\right)$, then find $f^{\prime}(-1)$
(72) Let the revenue $R$ obtained from selling $x$ units of an item be given by $R(x)=3 x\left(2+x^{2}\right)+600$. Find the marginal revenue when production is 35 units. Interpret the result.
(73) Let the average cost of production for an item be $\bar{C}(x)=-2 x^{2}+4+\frac{100}{x}$. Find the marginal cost when production is 50 units. Interpret the result.
(74) Let the demand for an item be $p(x)=3 x+5 x^{2}$, and the average cost of production be $\bar{C}(x)=5+4 x$. Find the marginal profit when production is 20 units. Interpret the result.
(75) Let the demand for an item be $p(x)=4 x+10 x^{2}$. Find the marginal revenue when production is 35 units. Interpret the result.
(76) Let the average cost of production for an item be $\bar{C}(x)=5(4-3 x)+\frac{75}{x}$. Find the marginal cost when production is 12 units. Interpret the result.
(77) Let the price function for an item be $p=8 x-4+\frac{80}{x}$. Find the marginal revenue when production is 15 units. Interpret the result.
(78) Let the revenue $R$ (in dollars) obtained from selling $x$ units of an item be given by $R(x)=4 x\left(3+x^{2}\right)+800$. Find the marginal revenue when production is 40 units. Interpret the result.
(79) Let the average cost of production for an item be $\bar{C}(x)=-3 x+6+\frac{220}{x}$. Find the marginal cost when production is 15 units. Interpret the result.
(80) Let the demand for an time be $p(x)=2 x+7 x^{2}$, and the average cost of production be $\bar{C}(x)=4+3 x$. Find the marginal profit when production is 25 units. Interpret the result.
(81) Let the demand for an item be $p(x)=6 x+4 x^{2}$. Find the marginal revenue when production is 20 units. Interpret the result.
(82) Let the average cost of production for an item be $\bar{C}(x)=6(3-7 x)+\frac{150}{x}$. Find the marginal cost when production is 22 units. Interpret the result.
(83) Let the price function for an item be $p=12 x-8+\frac{90}{x}$. Find the marginal revenue when production is 9 units. Interpret the result.
(84) Let the revenue $R$ in dollars obtained from selling $x$ units of an item be given by $R(x)=4 x^{2}+5 x+100$. Find the marginal demand when production is 50 units. Interpret the result.
(85) Let the cost $C$ in dollars for producing $x$ units of an item be given by $C(x)=0.1 x^{3}+50 x+200$. Find the marginal average cost when production is 20 units. Interpret the result.
(86) Given the graph of $f(x)$,
(a) Give the interval(s) where the slope of the tangent line to the curve of $f(x)$ is negative.
(b) Locate the $x$-value(s) where $f(x)$ is continuous but not differentiable.
(c) Give the interval(s) where $f(x)$ is continuous.
(d) Find the values of $f(-1) ; f(0) ; f(1) ; f(3)$
(87) Given the graph of $f(x)$,

(88) Given the graph of $f(x)$,
(a) Give the interval(s) where the slope of the tangent line to the curve of $f(x)$ is negative.
(b) Locate the $x$-value(s) where $f(x)$ is continuous but not differentiable.
(c) Give the interval(s) where $f(x)$ is continuous.
(d) Find the values of $f(-3) ; f(-2) ; f(-1) ; f(2)$

(a) Give the interval(s) where the slope of the tangent line to the curve of $f(x)$ is positive.
(b) Locate the $x$-value(s) where $f(x)$ is continuous but not differentiable.
(c) Give the interval(s) where $f(x)$ is continuous.
(d) Find the values of $f(-2) ; f(0) ; f(1) ; f(-1)$


## ANSWERS

(1) $y=-11 x+18$
(2) $y=-20 x-4$
(3) $y=-9 x+20$
(4) $y=-21 x-16$
(5) $y=-19 x-43$
(6) $y=14 x-9$ $\begin{array}{ll}\text { (7) } y=-4 x+5 & \text { (8) } y=-4 x-7\end{array}$
(9) $y=13 x+10$
(10) $y=5 x-10$
(11) $y=27 x-49$
(12) $y=-33 x-39$
(13) $y=\frac{-1}{4} x+\frac{7}{4}$
(14) $y=\frac{3}{2} x+9$
(15) $y=8 x+18$
(16) $y=3 x-4$
(17) $\frac{109}{2}$
(18) $\frac{32}{3}$
(19) $\frac{-85}{3}$
(20) $\frac{173}{2}$
(21) $\frac{191}{8}$
(22) $3 \quad(23)-88$
(24) 22
(25) 113 (26) 5
(27) $\frac{29}{2}$
(28) 526
(29) $\frac{9}{8}$
(30) $\frac{64}{3}$
(31) $\frac{4}{3}$
(32) -96
(33) $\frac{9}{5} \quad(34) 12$
(35) $-16 \quad$ (36) $\frac{-22}{3}$
(37) 42
(38) $\frac{73}{4}$
(39) 131
(40) 14
(41) $117 \quad$ (42) 2
(43) $9 \quad(44)-844$
(45) $0 \quad$ (46) $\frac{-4}{27}$
(47) $\frac{24}{5}$
(48) $\frac{-4}{9}$
(49) $85 \quad(50) 2$
(51) $y=6 x+8$
(52) $y=2 x-9$
(53) $y=2 x+1 \quad$ (54) $y=\frac{-2}{9} x+4$
(55) $y=\frac{3}{10} x+\frac{7}{10}$
(56) $y=-12 x+75$
(57) $y=13 x-18$
(58) $y=x-1$
(59) $y=\frac{9}{2} x-\frac{3}{2}$
(60) $y=\frac{-9}{2} x+37$
(61) $y=-3 x+18$
(62) $y=3 x-2$
(63) $y=19 x-4$
(64) $y=x+21$
(65) $x=-5$ and $x=1$
(66) $(3,-221)$ and $(-8,1066)$
(67) $(0,0)$ and $(-8,-16)$
(68) $\left(1, \frac{1}{4}\right)$
(69) $13 \quad$ (70) $\frac{-7}{2}$
(71) -14
(72) 11031 (Don't forget to interpret)
(73) - 14996 (Don't forget to interpret) (74) 5955 (Don't forget to interpret)
(75) 37030 (Don't forget to interpret) (76) -340 (Don't forget to interpret)
(77) 236 (Don't forget to interpret) (78) 19212 (Don't forget to interpret)
(79) - 84 (Don't forget to interpret) (80) 13071 (Don't forget to interpret)
(81) 5040 (Don't forget to interpret) (82) - 1830 (Don't forget to interpret)
(83) 208 (Don't forget to interpret) (84) 3.96 (Don't forget to interpret)
(85) 3.50 (Don't forget to interpret) (86a) $]-1,1[\cup] 3,+\infty\left[\begin{array}{ll}\text { ( } 86 \mathrm{~b}) \\ x=1 & \text { (86c) } \mathbb{R} \backslash\{-1,3\}\end{array}\right.$
(86d) DNE, $1,-2,4$ (87a) $]-2,0[\cup] 1,+\infty\left[\begin{array}{lll}\text { (87b) } x=1 & \text { (87c) } \mathbb{R} \backslash\{-2\} & \text { (87d) } 3,1,0,0\end{array}\right.$
(88a) $]-\infty,-3[\cup]-3,-1[\cup] 2,+\infty\left[\begin{array}{lll}\text { (88b) } x=-3 & \text { (88c) } \mathbb{R} \backslash\{-1,2\} & \text { (88d) } 1,0,3, \text { DNE }\end{array}\right.$

