Use the **limit definition** of the derivative to find the equation of the tangent line to the graph of the function at the given point.

- (1) $f(x) = 6 + x 3x^2$ at x = 2 (2) $f(x) = 7x^2 6x + 3$ at x = -1
- (3) $f(x) = -2x^2 + 3x + 2$ at x = 3(4) $f(x) = 5x^2 - x + 4$ at x = -2(5) $f(x) = 4x^2 + 5x - 7$ at x = -3(6) $f(x) = 3x^2 + 8x - 6$ at x = 1

(8) $f(x) = 2x^2 + 4x + 1$ at x = -2

(10) $f(x) = 3x^2 - 7x + 2$ at x = 2

(12) $f(x) = 5x^2 - 3x + 6$ at x = -3

(7) $f(x) = 4 - 2x - x^2$ at x = 1

(9)
$$f(x) = -4x^2 + 5x + 6$$
 at $x = -1$

- (11) $f(x) = 6x^2 9x + 5$ at x = 3
- (13) $f(x) = \frac{4}{x+1}$ at x = 3(14) $f(x) = 6\sqrt{x+2}$ at x = 2(15) $f(x) = \frac{2}{x^2 - 3}$ at x = -2(16) $f(x) = \sqrt{x^3 - 4}$ at x = 2

Find the slope of the tangent line to the graph of the given function at the given point.

(17)	$f(x) = 7x^2 - 2\sqrt{x} + \frac{16}{x} - 12$ at $x = 4$	(18)	$g(x) = 6x^3 - 4\sqrt[3]{x} - \frac{3}{x^2} + 3$ at $x = -1$
(19)	$g(x) = \frac{4}{\sqrt[3]{x}} - 12x^2 - 6\sqrt{x} + 7$ at $x = 1$	(20)	$g(x) = 18x^4 + 6\sqrt[4]{x^3} - \frac{5}{x^2} + 10$ at $x = 1$
(21)	$g(x) = 6x - \frac{15}{x^4} + 4x^2 + 13$ at $x = 2$	(22)	$g(x) = 7x + \frac{12}{x^3} - 16x^2 + 25$ at $x = -1$
(23)	$f(x) = (x^2 + 1) (1 - x^3)$ at $x = 2$	(24)	$f(x) = (3x^2 + x + 2)(1 + 3x)$ at $x = -1$
(25)	$f(x) = (x^2 - 2x)(5 - x + 2x^2)$ at $x = 3$	(26)	$f(x) = (5 + x - x^2) (2x^2 - 3x + 1)$ at $x = 1$
(27)	$f(x) = (2x + \sqrt{x}) (10\sqrt{x} - 3x^2)$ at $x = 1$	(28)	$f(x) = (3x - 2\sqrt{x})(x^3 - x)$ at $x = 4$
(29)	$g(x) = rac{6}{\left(2 + x - x^2 ight)^3}$ at $x = 1$	(30)	$g(x) = \sqrt[3]{(4 - 4x - x^2)^4}$ at $x = 2$
(31)	$g(x) = \frac{9}{\sqrt{2x^2 - 4x + 3}}$ at $x = -1$	(32)	$g(x) = (x^4 - 2x^2 - 9)^4$ at $x = 2$
(33)	$g(x) = \sqrt[5]{x^3 - 3x + 3}$ at $x = -2$	(34)	$g(x) = 5x^3 - 4\sqrt{x} + \frac{2}{\sqrt{x}} - 8$ at $x = 1$
(35)	$g(x) = 8x^4 - 6\sqrt[3]{x^2} - \frac{4}{x^3} + 9$ at $x = -1$	(36)	$g(x) = \frac{2}{\sqrt[3]{x^5}} + 8x^{1/2} - 2x^4 + 5 at x = 1$
(37)	$g(x) = \frac{4}{\sqrt{x^3}} - 12\sqrt[3]{x^4} + 32x^2 - 25 at x = 1$	(38)	$g(x) = 3x^2 - \frac{5}{x^2} + 5x - 20$ at $x = 2$
(39)	$g(x) = 12x - \frac{8}{x^4} + 10x^3 - 18$ at $x = -2$	(40)	$f(x) = (x^2 + x) (2 - x^2)$ at $x = -2$
(41)	$f(x) = (4x^2 + 3x + 1)(2 + 5x)$ at $x = 1$	(42)	$f(x) = (x - x^3) (1 + x - x^2)$ at $x = -1$
(43)	$f(x) = (2 + 3x + x^2) (4x^2 - 2x + 3)$ at $x = -1$	(44)	$f(x) = (4x + 2\sqrt{x}) (6\sqrt{x} - 4x^2)$ at $x = 4$
(45)	$f(x) = (4x - 6\sqrt{x})(5x - x^3)$ at $x = 1$	(46)	$g(x) = \frac{4}{(3+2x+x^2)^2}$ at $x = 1$

(47)
$$g(x) = \sqrt[5]{(x^3 - 4x + 1)^3}$$
 at $x = 2$ (48) $g(x) = \frac{12}{\sqrt{9 - 2x - x^2}}$ at $x = -2$
(49) $g(x) = (8 + 5x + 4x^3)^5$ at $x = -1$ (50) $g(x) = \sqrt[3]{2x^2 - 6x + 1}$ at $x = 3$

Find the equation of the tangent line to the graph of the function at the given point.

$$(51) \quad f(x) = \frac{2x}{x+3} \quad at \quad x = -2$$

$$(52) \quad f(x) = \frac{1-3x}{x-1} \quad at \quad x = 2$$

$$(53) \quad f(x) = \frac{2+\sqrt{x}}{2-\sqrt{x}} \quad at \quad x = 1$$

$$(54) \quad f(x) = \frac{4\sqrt{x}}{x-3} \quad at \quad x = 9$$

$$(55) \quad f(x) = \frac{2x+3}{4+\sqrt{x}} \quad at \quad x = 1$$

$$(56) \quad f(x) = \frac{3x}{x-4} \quad at \quad x = 5$$

$$(57) \quad f(x) = \frac{2-5x}{x-3} \quad at \quad x = 2$$

$$(58) \quad f(x) = \frac{\sqrt{x}+1}{3-\sqrt{x}} \quad at \quad x = 4$$

$$(59) \quad f(x) = \frac{3\sqrt{x}}{2-x} \quad at \quad x = 1$$

$$(60) \quad f(x) = \frac{5x-1}{2\sqrt{x}-3} \quad at \quad x = 4$$

$$(61) \quad f(x) = \frac{x^2}{x-2} \quad at \quad x = 3$$

$$(62) \quad f(x) = (x^3 - 2x^2 + 3x - 1)^{3/2} \quad at \quad x = 1$$

$$(63) \quad f(x) = (4x - x^2)(x^3 + 4) \quad at \quad x = 1$$

$$(64) \quad f(x) = \frac{24}{\sqrt{x}} + \frac{16}{x^2} + 3x \quad at \quad x = 4$$

(65) Given $f(x) = x^3 + 6x^2 - 15x + 4$, find the x-value(s) such that the tangent line to the curve of f(x) is horizontal.

(66) Find the point(s) on the curve of $f(x) = 2x^3 + 15x^2 - 140x + 10$ such that the slope of the tangent line is 4.

- (67) Given $f(x) = \frac{x^2}{x+4}$, find the point(s) such that the tangent line to the curve of f(x) is horizontal.
- (68) Given $f(x) = \frac{\sqrt{x}}{x^2 + 3}$, find the point(s) such that the tangent line to the curve of f(x) is horizontal.
- (69) If f(1) = 5, f'(1) = -2 and $g(x) = x^3 \cdot f(x)$, then find g'(1)

(70) If
$$h(2) = 4$$
, $h'(2) = -3$ and $f(x) = \frac{2 h(x)}{x^2}$, then find $f'(2)$

(71) If g(-1) = -4, g'(1) = 7 and $f(x) = g(x^2)$, then find f'(-1)

(72) Let the revenue R obtained from selling x units of an item be given by $R(x) = 3x(2+x^2) + 600$. Find the marginal revenue when production is 35 units. Interpret the result.

(73) Let the average cost of production for an item be $\overline{C}(x) = -2x^2 + 4 + \frac{100}{x}$. Find the marginal cost when production is 50 units. Interpret the result.

(74) Let the demand for an item be $p(x) = 3x + 5x^2$, and the average cost of production be $\overline{C}(x) = 5 + 4x$. Find the marginal profit when production is 20 units. Interpret the result.

(75) Let the demand for an item be $p(x) = 4x + 10x^2$. Find the marginal revenue when production is 35 units. Interpret the result.

(76) Let the average cost of production for an item be $\overline{C}(x) = 5(4-3x) + \frac{75}{x}$. Find the marginal cost when production is 12 units. Interpret the result.

(77) Let the price function for an item be $p = 8x - 4 + \frac{80}{x}$. Find the marginal revenue when production is 15 units. Interpret the result.

(78) Let the revenue R (in dollars) obtained from selling x units of an item be given by $R(x) = 4x(3 + x^2) + 800$. Find the marginal revenue when production is 40 units. Interpret the result.

(79) Let the average cost of production for an item be $\overline{C}(x) = -3x + 6 + \frac{220}{x}$. Find the marginal cost when production is 15 units. Interpret the result.

(80) Let the demand for an time be $p(x) = 2x + 7x^2$, and the average cost of production be $\overline{C}(x) = 4 + 3x$. Find the marginal profit when production is 25 units. Interpret the result.

(81) Let the demand for an item be $p(x) = 6x + 4x^2$. Find the marginal revenue when production is 20 units. Interpret the result.

(82) Let the average cost of production for an item be $\overline{C}(x) = 6(3-7x) + \frac{150}{x}$. Find the marginal cost when production is 22 units. Interpret the result.

(83) Let the price function for an item be $p = 12x - 8 + \frac{90}{x}$. Find the marginal revenue when production is 9 units. Interpret the result.

(84) Let the revenue R in dollars obtained from selling x units of an item be given by $R(x) = 4x^2 + 5x + 100$. Find the marginal demand when production is 50 units. Interpret the result.

(85) Let the cost C in dollars for producing x units of an item be given by $C(x) = 0.1x^3 + 50x + 200$. Find the marginal average cost when production is 20 units. Interpret the result.

- (86) Given the graph of f(x),
- (a) Give the interval(s) where the slope of the tangent line to the curve of f(x) is negative.
- (b) Locate the x-value(s) where f(x) is continuous but <u>not</u> differentiable.
- (c) Give the interval(s) where f(x) is continuous.
- (d) Find the values of f(-1); f(0); f(1); f(3)

- (88) Given the graph of f(x),
- (a) Give the interval(s) where the slope of the tangent line to the curve of f(x) is negative.
- (b) Locate the x-value(s) where f(x) is continuous but <u>not</u> differentiable.
- (c) Give the interval(s) where f(x) is continuous.
- (d) Find the values of f(-3); f(-2); f(-1); f(2)

- (a) Give the interval(s) where the slope of the tangent line to the curve of f(x) is positive.
- (b) Locate the x-value(s) where f(x) is continuous but <u>not</u> differentiable.
- (c) Give the interval(s) where f(x) is continuous.
- (d) Find the values of f(-2); f(0); f(1); f(-1)

ANSWERS

(1) $y = -11x + 18$ (2) $y = -20x - 4$ (3) $y = -9x + 20$ (4) $y = -21x - 16$ (5) $y = -19x - 43$				
(6) $y = 14x - 9$ (7) $y = -4x + 5$ (8) $y = -4x - 7$ (9) $y = 13x + 10$ (10) $y = 5x - 10$ (11) $y = 27x - 49$				
(12) $y = -33x - 39$ (13) $y = \frac{-1}{4}x + \frac{7}{4}$ (14) $y = \frac{3}{2}x + 9$ (15) $y = 8x + 18$ (16) $y = 3x - 4$				
$(17) \ \frac{109}{2} (18) \ \frac{32}{3} (19) \ \frac{-85}{3} (20) \ \frac{173}{2} (21) \ \frac{191}{8} (22) \ 3 (23) \ -88 (24) \ 22 (25) \ 113 (26) \ 5 \qquad (24) \ 22 (25) \ 113 (26) \ 5 (26) \$				
$(27) \ \frac{29}{2} (28) \ 526 (29) \ \frac{9}{8} (30) \ \frac{64}{3} (31) \ \frac{4}{3} (32) \ -96 (33) \ \frac{9}{5} (34) \ 12 (35) \ -16 (36) \ \frac{-22}{3}$				
$(37) \ 42 (38) \ \frac{73}{4} (39) \ 131 (40) \ 14 (41) \ 117 (42) \ 2 (43) \ 9 (44) \ -844 (45) \ 0 (46) \ \frac{-4}{27}$				
$(47) \frac{24}{5} (48) \frac{-4}{9} (49) \ 85 (50) \ 2 (51) \ y = 6x + 8 (52) \ y = 2x - 9 (53) \ y = 2x + 1 (54) \ y = \frac{-2}{9}x + 4 $				
(55) $y = \frac{3}{10}x + \frac{7}{10}$ (56) $y = -12x + 75$ (57) $y = 13x - 18$ (58) $y = x - 1$ (59) $y = \frac{9}{2}x - \frac{3}{2}$				
(60) $y = \frac{-9}{2}x + 37$ (61) $y = -3x + 18$ (62) $y = 3x - 2$ (63) $y = 19x - 4$ (64) $y = x + 21$				
(65) $x = -5$ and $x = 1$ (66) (3, -221) and (-8, 1066) (67) (0, 0) and (-8, -16) (68) $\left(1, \frac{1}{4}\right)$				
(69) 13 (70) $\frac{-7}{2}$ (71) -14 (72) 11031 (Don't forget to interpret)				
(73) - 14996 (Don't forget to interpret) (74) 5955 (Don't forget to interpret)				
(75) 37030 (Don't forget to interpret) (76) -340 (Don't forget to interpret)				
(77) 236 (Don't forget to interpret) (78) 19212 (Don't forget to interpret)				
(79) -84 (Don't forget to interpret) (80) 13071 (Don't forget to interpret)				
(81) 5040 (Don't forget to interpret) (82) -1830 (Don't forget to interpret)				
(83) 208 (Don't forget to interpret) (84) 3.96 (Don't forget to interpret)				
(85) 3.50 (Don't forget to interpret) (86a)] $-1, 1[\cup]3, +\infty[$ (86b) $x = 1$ (86c) $\mathbb{R} \setminus \{-1, 3\}$				
(86d) DNE, 1, -2, 4 (87a)]-2,0[\cup]1,+ ∞ [(87b) $x = 1$ (87c) $\mathbb{R} \setminus \{-2\}$ (87d) 3, 1, 0, 0				
$(88a)] - \infty, -3[\cup] - 3, -1[\cup]2, +\infty[(88b) x = -3 (88c) \mathbb{R} \setminus \{-1, 2\} (88d) 1, 0, 3, \text{DNE} \}$				