Balancing Chemical Equations

An example:

Consider the following chemical reaction:

$$N_2 H_4 + N_2 O_4 \rightarrow N_2 + H_2 O$$

(Hydrazine) (Dinitrogen tetroxide)

Let: x_1 = number of molecules of N_2H_4 in the reaction x_2 = number of molecules of N_2O_4 in the reaction x_3 = number of molecules of N_2 in the reaction x_4 = number of molecules of H_2O in the reaction

so that:
$$x_1 N_2 H_4 + x_2 N_2 O_4 \rightarrow x_3 N_2 + x_4 H_2 O$$

Number of atoms of Nitrogen:
$$2x_1 + 2x_2 = 2x_3$$
 or $x_1 + x_2 = x_3$

Number of atoms of Hydrogen:
$$4x_1 = 2x_4$$
 or $2x_1 = x_4$

Number of atoms of Oxygen:
$$4x_2 = x_4$$

The resulting system of equations is:

$$\left\{
\begin{array}{rcl}
x_1 + x_2 - x_3 &= 0 \\
2x_1 & -x_4 &= 0 \\
4x_2 & -x_4 &= 0
\end{array}
\right\}$$

$$\begin{bmatrix}
1 & 1 & -1 & 0 & 0 \\
2 & 0 & 0 & -1 & 0 \\
0 & 4 & 0 & -1 & 0
\end{bmatrix} \Rightarrow
\begin{bmatrix}
1 & 0 & 0 & -1/2 & 0 \\
0 & 1 & 0 & -1/4 & 0 \\
0 & 0 & 1 & -3/4 & 0
\end{bmatrix} \Rightarrow
\begin{bmatrix}
x_1 = \frac{1}{2}t \\
x_2 = \frac{1}{4}t \\
x_3 = \frac{3}{4}t
\end{bmatrix}$$

$$x_4 = t$$

There are many infinitely many choices for t. Any value of t such that x_1, x_2, x_3, x_4 are natural numbers (i.e. 1, 2, 3, ...) will suffice.

For example, let
$$t=4$$
 , so that $x_1=2$ $x_2=1$ resulting in the balanced equation: $x_4=4$ $x_4=4$

Problems

Balance the following chemical equations. Set up the appropriate system of equations and use an augmented matrix to solve the system. Define all variables in words.

(1)
$$Fe_2 O_3 + C O \rightarrow Fe + C O_2$$
 (Hematite) (Carbon monoxide) (Iron) (Carbon dioxide)

(3)
$$MnSO_4 + KMnO_4 + H_2O \rightarrow MnO_2 + K_2SO_4 + H_2SO_4$$