1 Continuity

1. Use the definition of continuity to show that the function

$$
f(x)=\left\{\begin{array}{cc}
2 x & \text { for } x \leq 2 \\
3 & \text { for } x>2
\end{array}\right.
$$

is not continuous at $x=2$.
2. The function $f(x)$ is defined by

$$
f(x)=\left\{\begin{array}{cc}
2 x & \text { for } x \leq 1 \\
3 & \text { for } x>1
\end{array}\right.
$$

(a) Sketch the graph of $f(x)$.
(b) Find $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$.
(c) Is $f(x)$ continuous at $x=1$? Explain.
3. None of the following is continuous at $x=1$. For each, state the condition for continuity that is not satisfied:
(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $f(x)= \begin{cases}2 x & \text { for } x<1 \\ x^{2} & \text { for } x \geq 1\end{cases}$
(c) $f(x)=\left\{\begin{array}{cc}\sqrt{x} & \text { for } x \neq 1 \\ 2 & \text { for } x=1\end{array}\right.$
4. Using the definition of continuity, prove that the following function is continuous at $x=-2$:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-x-6}{x+2} & \text { if } x \neq-2 \\
-5 & \text { if } x=-2
\end{array}\right.
$$

5. Determine a value for b which makes $g(x)$ continuous.

$$
g(x)=\left\{\begin{array}{cl}
b x & \text { if } x<3 \\
6 & \text { if } x \geq 3
\end{array}\right.
$$

6. If

$$
f(x)=\left\{\begin{array}{cc}
3 x+1 & \text { when } x<2 \\
1 & \text { when } x=2 \\
5-x & \text { when } x>2
\end{array}\right.
$$

(a) Sketch the graph of $f(x)$.
(b) Find (i) $\lim _{x \rightarrow 2^{-}} f(x)$ and (ii) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) Is $f(x)$ continuous at $x=2$? Explain.
7. If

$$
f(x)=\left\{\begin{array}{lll}
3+x & \text { if } & x \leq 1 \\
3-x & \text { if } & x>1
\end{array}\right.
$$

(a) Find $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}}$.
(b) Does $\lim _{x \rightarrow 1} f(x)$ exist? Explain.
(c) Is $f(x)$ continuous at $x=1$? Explain.
8. If

$$
f(x)=\left\{\begin{array}{lll}
x^{3}+6 & \text { if } & x<-1 \\
x^{3}+4 & \text { if } & x \geq-1
\end{array}\right.
$$

Is $f(x)$ continuous at $x=-1$? Explain.
9. Find values of a and c if $f(x)$ is continuous at $x=4$.

$$
f(x)=\left\{\begin{array}{ccc}
2 c x & \text { if } & x<4 \\
x+a & \text { if } & x=4 \\
x^{2}-6 & \text { if } & x>4
\end{array}\right.
$$

10. Find the values of constants c and k that make $f(x)$ continuous on $(-\infty, \infty)$

$$
f(x)=\left\{\begin{array}{cll}
x+2 c & \text { if } & x<-2 \\
3 c x+k & \text { if } & -2 \leq x \leq 1 \\
3 x-2 k & \text { if } & x>1
\end{array}\right.
$$

11. Let
$f(x)=\left\{\begin{array}{ccl}3 x^{2}-2 x+4 & \text { if } & x<-1 \\ -9 x & \text { if } & -1 \leq x<2 \\ 3 x-4 & \text { if } & x \geq 2\end{array}\right.$
(a) Prove $f(x)$ is continuous at $x=-1$.
(b) $f(x)$ is discontinuous at $x=2$. State which continuity property fails.
12. Find all real numbers c for which the function $g(x)$ given by

$$
g(x)=\left\{\begin{array}{ccc}
x^{2} & \text { if } & x<\frac{1}{2} \\
c-x^{2} & \text { if } & x \geq \frac{1}{2}
\end{array}\right.
$$

is continuous at $x=\frac{1}{2}$.
13. Let
$f(x)=\left\{\begin{array}{ccl}x^{2} & \text { if } & -1 \leq x<0 \text { or } 0<x \leq 1 \\ 1 & \text { if } & x=0 \\ 2 x-1 & \text { if } & x<-1 \text { or } x>1\end{array}\right.$
(a) Discuss the continuity of $f(x)$ at $x=-1,1,0$.
(b) Sketch the graph of $f(x)$.
14. Prove, using the definition of continuity, that

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x^{2}-4}{x-2} & \text { if } & x \neq 2 \\
7 & \text { if } & x=2
\end{array}\right.
$$

is discontinuous at $x=2$.
15. Find a value for the constant k that will make the functions continuous at the indicated value of x.
(a) At $x=1$

$$
f(x)=\left\{\begin{array}{ccc}
7 x-2 & \text { if } & x \leq 1 \\
k x^{2} & \text { if } & x>1
\end{array}\right.
$$

(b) At $x=0$

$$
f(x)=\left\{\begin{array}{ccc}
\frac{\sin x}{x} & \text { if } & x \neq 0 \\
k & \text { if } & x=0
\end{array}\right.
$$

16. If

$$
f(x)=\left\{\begin{array}{lll}
x+1 & \text { if } & x \leq 5 \\
7-x & \text { if } & x>5
\end{array}\right.
$$

prove, using the definition of continuity, that the function $f(x)$ is discontinuous at $x=5$.
17. If

$$
g(x)=\left\{\begin{array}{lll}
3 x+7 & \text { if } & x \leq 4 \\
k x-1 & \text { if } & x>4
\end{array}\right.
$$

find the value of the constant k that makes the function $g(x)$ continuous on $(-\infty, \infty)$.
18. If

$$
f(x)=\left\{\begin{array}{ccl}
x^{2} & \text { if } & x<0 \\
x+2 & \text { if } & 0 \leq x<3 \\
2 x-1 & \text { if } & x>3
\end{array}\right.
$$

(a) Sketch the graph of $f(x)$.
(b) Find $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$.
(c) Find $\lim _{x \rightarrow 3^{+}} f(x)$ and $\lim _{x \rightarrow 3^{-}} f(x)$.
(d) Is $f(x)$ continuous at $x=0$? Explain.
(e) Is $f(x)$ continuous at $x=3$? Explain.
19. Find all values of x at which the following function is discontinuous. Support your answer with specific references to the definition of continuity.

$$
f(x)=\left\{\begin{array}{cll}
\frac{4 x}{x+1} & \text { if } & x \leq 1 \\
4-2 x & \text { if } & 1<x \leq 2 \\
3 x-4 & \text { if } & x>2
\end{array}\right.
$$

20. Discuss (a) the continuity, and (b) the differentiability, of the function whose graph appears below

21. (a) Is the function

$$
f(x)=\left\{\begin{array}{ccc}
x-1 & \text { if } & x \neq 2 \\
3 & \text { if } & x=2
\end{array}\right.
$$

continuous at $x=2$? Support your answer with a brief explanation.
(b) Given $f(x)=|x|$
i. Is f continuous at $x=0$? Why?
ii. Is f differentiable at $x=0$? Why?
22. Sketch the graph of

$$
f(x)=\left\{\begin{array}{cll}
1+x & \text { if } & x \leq-1 \\
1+x^{2} & \text { if } & -1<x<2 \\
7-x & \text { if } & x \geq 2
\end{array}\right.
$$

For what values of x is $f(x)$ not continuous? Give reasons for your answer.
23. State whether the following are TRUE or FALSE and justify your answer briefly:
(a) The function $f(x)=\frac{x^{3}-x}{x}$ is continuous at $x=0$.
(b) The function $f(x)=\frac{x^{3}-x}{x}$ is continuous at $x=1$.
(c) The function

$$
f(x)=\left\{\begin{array}{lll}
x^{3}+2 x & \text { if } & x<-1 \\
|2 x|-5 & \text { if } & x \geq-1
\end{array}\right.
$$

is continuous at $x=-1$.
24. Let

$$
f(x)=\left\{\begin{array}{ccc}
x^{2}+2 & \text { if } & x<1 \\
4-x & \text { if } & x \geq 1
\end{array}\right.
$$

(a) Is this function continuous at $x=1$?
(b) Use the definition of continuity to justify your answer.
25. If

$$
f(x)=\left\{\begin{array}{ccc}
2 x+1 & \text { if } & x<3 \\
x+4 & \text { if } & x \geq 3
\end{array}\right.
$$

(a) Is $f(x)$ continuous at $x=3$? Reason?
(b) Is $f(x)$ differentiable at $x=3$? Reason?
26. If

$$
g(x)=\left\{\begin{array}{lll}
4 x-1 & \text { if } & x \leq 2 \\
x^{2}+1 & \text { if } & x>2
\end{array}\right.
$$

(a) Is $g(x)$ continuous at $x=2$? Reason?
(b) Is $g(x)$ differentiable at $x=2$? Reason?
27. Discuss the continuity of the function

$$
h(x)=\left\{\begin{array}{ccl}
\frac{-1}{x+2} & \text { if } & x \leq-1 \\
x^{3}-1 & \text { if } & -1<x \leq 2 \\
9-x & \text { if } & x>2
\end{array}\right.
$$

28. Let

$$
G(x)=\left\{\begin{array}{ccl}
x^{2}+2 x & \text { if } & x<-1 \\
0 & \text { if } & -1 \leq x \leq 1 \\
\ln x & \text { if } & x>1
\end{array}\right.
$$

(a) Where is $G(x)$ not continuous?
(b) Where is $G(x)$ not differentiable?

Answers:

1. The one-sided limits are different as we see below

$$
\begin{gathered}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 2 x=4 \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3=3
\end{gathered}
$$

Therefore $\lim _{x \rightarrow 2} f(x)$ does not exist. Hence f is not contiunous at $x=2$.
2.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} 3=3 \\
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} 2 x=2
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 1} f(x)$ does not exist. Hence f is not contiunous at $x=1$.
3. (a) $f(1)$ is not defined.
(b) $\lim _{x \rightarrow 1} f(x)$ does not exist since $\lim _{x \rightarrow 1^{-}} 2 x=2 \neq 1=\lim _{x \rightarrow 1^{+}} x^{2}$
(c) $\lim _{x \rightarrow 1} f(x) \neq f(1)$ since $2 \neq \sqrt{1}$.
4. (a) $f(-2)=-5$
(b) $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x+2}$
$=\lim _{x \rightarrow-2} \frac{(x-3)(x+2)}{(x+2)}$
$=\lim _{x \rightarrow-2}(x-3)=-5$
(c) $\lim _{x \rightarrow-2} f(x)=f(-2)$
5. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)$ if $\lim _{x \rightarrow 3^{-}} b x=\lim _{x \rightarrow 3^{+}} 6$, i.e. if $b \cdot 3=6$. Therefore $b=2$.
6. (a)

(b) i. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(3 x+1)=7$ and ii. $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(5-x)=3$
therefore $\lim _{x \rightarrow 2} f(x)$ does not exist, and so f is discontinuous at $x=2$.
7. $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3-x)=2$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(3+x)=4$ therefore $\lim _{x \rightarrow 1} f(x)$ does not exist, and so f is not continuous at $x=1$.
8. $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}\left(x^{3}+4\right)=3$ and $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(x^{3}+6\right)=5$ therefore $\lim _{x \rightarrow-1} f(x)$ does not exist, and so f is discontinuous at $x=-1$.
9. If f is continuous at $x=4$ then

$$
\lim _{x \rightarrow 4^{-}} f(x)=f(4)=\lim _{x \rightarrow 4^{+}} f(x)
$$

Therefore

$$
\lim _{x \rightarrow 4^{-}} 2 c x=4+a=\lim _{x \rightarrow 4+}\left(x^{2}-6\right)
$$

which yields

$$
8 c=4+a=10
$$

Thus $c=\frac{5}{4}$ and $a=6$.
10. At $x=-2$

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =f(-2)=\lim _{x \rightarrow-2^{+}} f(x) \\
\lim ^{2}(x+2 c) & =-6 c+k
\end{aligned} \\
& \lim _{x \rightarrow-2^{-}}(x+2 c)=-6 c+k=\lim _{x \rightarrow-2^{+}}(3 c x+ \\
& 8 c-k=-6 c+k=-6 c+k
\end{aligned}
$$

(b)

Thus we obtain the equation

$$
\text { (1) } \quad 8 c-k=2
$$

At $x=1$

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =f(1)
\end{aligned}=\lim _{x \rightarrow 1^{+}} f(x) \quad .
$$

Here we obtain

$$
\text { (2) } \quad 3 c+3 k=3
$$

Now we need only solve the system of equation (1) and (2) to get the solution: $c=1 / 3, k=2 / 3$.
11. (a) $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(3 x^{2}-2 x+4\right)=9$ $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}(-9 x)=9$ Thus $\lim _{x \rightarrow-1} f(x)=9=f(-1)$
Hence f is continuous at $x=-1$.
(b) $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(-9 x)=-18$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(3 x-4)=2$
Thus $\lim _{x \rightarrow 2} f(x)$ does not exist and so $\stackrel{x \rightarrow 2}{f}$ is not continuous at $x=2$.
12. $\lim _{x \rightarrow 1 / 2^{-}} f(x)=f(1 / 2)=\lim _{x \rightarrow 1 / 2^{+}} f(x)$

$$
\lim _{x \rightarrow 1 / 2^{-}} x^{2}=c-1 / 4=\lim _{x \rightarrow 1 / 2^{+}} c-x^{2}
$$

Which becomes $1 / 4=c-1 / 4=c-1 / 4$ Thus $c=1 / 2$.
13. (a) i. f is discontinuous at $x=-1$ since $\lim _{x \rightarrow-1} f(x)$ does not exist.
ii. f is discontinuous at $x=0$ since $f(0) \neq \lim _{x \rightarrow 0} f(x)$.
iii. f is continuous at $x=1$.
14. $\lim _{x \rightarrow 2} f(x)=4 \neq 7=f(2)$, therefore f is discontinuous at $x=2$.
15. (a) $k=5$.
(b) $k=1$.
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}(x+1)=6$
$\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}(7-x)=2$
Thus $\lim _{x \rightarrow 5} f(x)$ does not exist
and so ${ }^{x \rightarrow 5}$ is not continuous at $x=5$.
17. $k=5$.
18. (a)

(b) $\lim _{x \rightarrow 0^{+}} f(x)=2 ; \lim _{x \rightarrow 0^{-}} f(x)=0$
(c) $\lim _{x \rightarrow 3^{+}} f(x)=5 ; \lim _{x \rightarrow 3^{+}} f(x)=5$
(d) No, since $\lim _{x \rightarrow 0} f(x)$ does not exist.
(e) No, since $f(3)$ is not defined.
19. f is not continuous at $x=-1$ since f has a vertical asymptote there. f is not continuous at $x=2$ since $\lim _{x \rightarrow 2} f(x)$ does not exist.
20. (a) Continuous everywhere except at $x=3$ and $x=6$.
(b) Differentiable everywhere except at $x=3, x=4$, and $x=6$.
21. (a) No, since $\lim _{x \rightarrow 2} f(x)=1 \neq 3=f(2)$.
(b) i. Yes, since $\lim _{x \rightarrow 0} f(x)=0=f(0)$.
ii. No, since $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ does not exist. [To see this show that the left- and right-limits are different (-1 and 1).]
22. f is discontinuous at $x=-1$,
since $\lim _{x \rightarrow-1} f(x)$ does not exist.
23. (a) No, since $f(0)$ is not deined.
(b) Yes, since $\lim _{x \rightarrow 1} f(x)=0=f(1)$.
(c) Yes, since $\lim _{x \rightarrow-1} f(x)=-3=f(-1)$.
24. (a) Yes.
(b) i. $f(1)$ is defined and equals 3 .
ii. $\lim _{x \rightarrow 1} f(x)$ exists and equals 3 .
iii. Thus $\lim _{x \rightarrow 1} f(x)=f(1)$.
25. (a) Yes, since $\lim _{x \rightarrow 3} f(x)=7=f(3)$.
(b) No, since $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ does not exist. [To see this show that the left- and right-limits are different (2 and 1).]
26. (a) No, since $\lim _{x \rightarrow 2} g(x)$ does not exist.
(b) No, since g is not continuous at $x=2$.
27. h is not continuous at $x=-2$, since it has a vertical asymptote there.
h is not continuous at $x=-1$, since $\lim _{x \rightarrow-1} h(x)$ does not exist.
h is continuous everywhere else.
28. (a) G is not continuous at $x=-1$.
(b) G is not differentiable at $x=-1$ and $x=1$.

