Marks

(10)

1. Let curve C have parametric equations

$$
x=t^{2}-4 ; y=2 t-t^{2}
$$

i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
ii) Find the point on C where the tangent line is horizontal.
iii) Set up the integral needed to find:
a) the area of the region bounded by C and the x-axsis
b) the length of C on the interval $0 \leq t \leq 2$
2. a) Sketch the polar curves $r_{1}=2+2 \cos \theta$ and $r_{2}=6 \cos \theta$ on
(8)
the same set of axes.
b) Find the points of intersection.
c) Set up the integrals needed to find:
i) the area common to both
ii) the length of $r_{1}=2+2 \cos \theta$
3. A particle moves along the space curve C defined by
(9)

$$
\vec{r}(t)=\left\langle t^{3}, \sqrt{\frac{3}{2}} t^{2}, t\right\rangle
$$

Find: i) the length of C from $t=0$ to $t=1$
ii) the tangential and normal components of acceleration
iii) the curvature at $t=1$
4. Sketch the following:
(6)
a) the space currve defined by $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$
b) the graph of the function $z=\sqrt{x^{2}+y^{2}-9}$
c) the 3 level curves of $f(x, y)=x-y^{2}$ corresponding to $c=0,1$ and
5. a) Let $w=2 x^{2}-y^{2}+z^{2}$. Find the direction and magnitude of the maximum rate of change (directional derivative) of w at the point $P(3,-2,1)$
b) Find the equation of the tangent line to the curve of intersection of the surfaces

$$
\begin{equation*}
x^{2}+4 y^{2}+2 z^{2}=27 \quad \text { and } \quad x^{2}+y^{2}-2 z^{2}=11 \text { at the point } \tag{3,-2,1}
\end{equation*}
$$

6. Find the critical points of $f(x, y)=x^{3}+3 x y^{2}+3 y^{2}-15 x+2$ and classify them as relative maxima, relative minima or saddlepoints.
(5)
7. i) Given $f(x, y)=x^{2} \ln \left(\frac{y}{x^{2}}\right)$, Find

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y} \tag{10}
\end{equation*}
$$

ii) If $z=f(x, y)$ where $x=r^{2}+s^{2}$ and $y=2 r s \quad$ find: $\frac{\partial^{2} z}{\partial r \partial s}$
iii) If $z=f(x, y)$ is implicitly defined by the equation $e^{x z}+\tan (y z)=x z^{2}$
find: $\frac{\partial z}{\partial x}$.
8. a) Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \frac{y^{3}}{\sqrt{y^{4}+x^{2}}} d x$ dy
b) Combine the following sum into one double integral in polar coordinates.

$$
\int_{1 / \sqrt{2}}^{1} \int_{\sqrt{1-x^{2}}}^{x} d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{x} d y d x+\int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} d y d x
$$

9. Set up a triple integral needed to find the volume of the solid part of the
sphere $x^{2}+y^{2}+z^{2}=16$ cut off by the cylinder $r=4 \sin \theta$.
10. a) Sketch the solid region S that lies in the first octant and is bounded by the coordinate planes, $z=4-x^{2}$ and $x+y=2$
b) Set up a double integral to find the volume of S.
11. Sketch the solid region defined by the limits of integration of the triple integral

$$
\begin{equation*}
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x y d z d y d x \quad \text { and express it } \tag{5}
\end{equation*}
$$

a) in cylindrical coordinates
b) in spherical coordinates
12. Estimate the value of $\int_{0}^{0.5} \sqrt{4+x^{3}} d x$ to six decimal place accuracy.
(8)
13. Use power series to evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2} e^{x}}$ (4)
14. a) Find a Taylor polynomial of degree 3 for $f(x)=\sqrt{x}$ centered at $c=4$ and an expression for Taylor's Remainder term $R_{3}(x)$

Use part (a) to approximate $\sqrt{4.1}$ and to state the accuracy of your approximation
15. Given $\ln (1+t)=\sum_{n=0}^{\infty}(-1)^{n}$
$\frac{t^{n+1}}{n+1}$
a) Find the value of the sixth derivative of $\ln \left(1+x^{2}\right)$ evaluated at $x=0$
b) Find the sum of the following:

$$
\frac{1}{2}-\frac{1}{2}\left(\frac{1}{2}\right)^{2}+\frac{1}{3}\left(\frac{1}{2}\right)^{3}-\frac{1}{4}\left(\frac{1}{2}\right)^{4}+\frac{1}{5}\left(\frac{1}{2}\right)^{5} .
$$

16. Manipulate the known power series for $\frac{1}{1-x}$ to obtain (7)
i) a power series for $f(x)=\frac{x}{(1-x)^{2}} \quad$ centered at $c=0$
ii) a power series for $g(x)=\frac{1}{2 x+5}$ centered at $c=2$

Answers

1. $\frac{d y}{d x}=\frac{1-t}{t} ; \frac{d^{2} y}{d x^{2}}=-\frac{1}{2 t^{3}}$
H.T. at $(-3,1)$ when $t=1$
$A=\int_{0}^{2}\left(4 t^{2}-2 t^{3}\right) d t$ and $\mathcal{L}=2 \int_{0}^{2} \sqrt{2 t^{2}-2 t+1} d t$
2. Points of intersection: $(3, \pi / 3),(3,5 \pi / 3)$ and the pole.
$A=2\left(\frac{1}{2} \int_{0}^{\pi / 3} 4(1+\cos \theta)^{2} d \theta+\frac{1}{2} \int_{\pi / 3}^{\pi / 2} 36 \cos ^{2} \theta d \theta\right)$
$\mathcal{L}=2 \int_{0}^{\pi} \sqrt{4(1+\cos \theta)^{2}+4 \sin ^{2} \theta} d \theta=8 \int_{0}^{\pi} \cos (\theta / 2) d \theta=16$
3. $\mathcal{L}=2 ; a_{T}=6 t ; a_{N}=\sqrt{6} ; \kappa(t)=\frac{\sqrt{6}}{\left(3 t^{2}+1\right)^{2}}$ and $\kappa(1)=\frac{\sqrt{6}}{16}$.
4. (a) Note $x^{2}+y^{2}=z^{2}$ and $z=t$. So the curve spirals upward on the boundary of the cone $x^{2}+y^{2}=z^{2}$
(b) $x^{2}+y^{2}-z^{2}=9$, and $z \geq 0$ Hyperboloid of one sheet, top part only.
(c) Three parabolas, $x=y^{2}, x=y^{2}+1$ and $x=y^{2}-1$.
5. (a) Maximum rate of change $=\|\nabla w(3,-2,1)\|=2 \sqrt{41}$ in the direction of $\nabla w(3,-2,1)$, or in the direction of the unit vector $\frac{1}{\sqrt{41}}\langle 6,2,1\rangle$.
(b) Its direction vector \vec{v} is parallel to $\nabla F(3,-2,1) \times \nabla G(3,-2,1)$ where $F(x, y, z)=x^{2}+4 y^{2}+2 z^{2}$ and $G(x, y, z)=x^{2}+y^{2}-2 z^{2}$.
$L:\langle x, y, z\rangle=\langle 3,-2,1\rangle+t\langle 10,6,9\rangle ; \quad t \in \mathbf{R}$
6. $(-1,-2)$ and $(-1,2)$ are saddle points; $(\sqrt{5}, 0)$ is a local minimum while $(-\sqrt{5}, 0)$ is a local maximum.
7. (i) $\frac{\partial f}{\partial y}=\frac{x^{2}}{y}$ and $\frac{\partial^{2} f}{\partial x \partial y}=\frac{2 x}{y}$
(ii) $\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x}(2 s)+\frac{\partial z}{\partial y}(2 r)$
$\frac{\partial^{2} z}{\partial r \partial s}=4 r s\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x^{2}}\right)+4\left(r^{2}+s^{2}\right) \frac{\partial^{2} z}{\partial y \partial x}+2 \frac{\partial z}{\partial y}$
(iii) Let $F(x, y, z)=e^{x z}+\tan (y z)-x z^{2}$. Then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=\frac{z\left(z-e^{x z}\right)}{x e^{x z}+y \sec ^{2}(y z)-2 x z}
$$

8. (a) $I=\frac{1}{4}(\sqrt{2}-1)$ (Change the order of integration)
(b) $I=\int_{0}^{\pi / 4} \int_{1}^{2} r d r d \theta$
9. $V=\int_{0}^{\pi} \int_{0}^{4 \sin \theta} \int_{-\sqrt{16-r^{2}}}^{\sqrt{16-r^{2}}} r d z d r d \theta$
10. (b) $V=\int_{0}^{2} \int_{0}^{2-x}\left(4-x^{2}\right) d y d x$
11. (a) $I=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4}\left(r^{2} \cos \theta \sin \theta\right) r d z d r d \theta$
$\begin{aligned}(\mathrm{b}) I= & \int_{0}^{2 \pi} \int_{0}^{\arctan (1 / 2)} \int_{0}^{4 / \cos \phi}\left(\rho^{2} \sin ^{2} \phi \cos \theta \sin \theta\right) \rho^{2} \sin \phi d \rho d \phi d \theta+ \\ & \int_{0}^{2 \pi} \int_{\arctan (1 / 2)}^{\pi / 2} \int_{0}^{\cot \phi \csc \phi}\left(\rho^{2} \sin ^{2} \phi \cos \theta \sin \theta\right) \rho^{2} \sin \phi d \rho d \phi d \theta\end{aligned}$
12.

$$
\lim _{x \rightarrow 0} \frac{x^{2}\left(\frac{1}{2}-\frac{x^{2}}{4!}+\cdots\right)}{x^{2}\left(1+x+\frac{x^{2}}{2!}+\cdots\right)}=\frac{1}{2}
$$

13. $\sqrt{4+x^{3}}=2\left(1+\frac{x^{3}}{4}\right)^{1 / 2}=2\left(1+\frac{1}{2}\left(x^{3} / 4\right)+\sum_{n=2}^{\infty} \frac{(-1)^{(n-1)}(1)(3) \cdots(2 n-3) x^{3 n}}{2^{3 n} n!}\right)$
$\int_{0}^{t} \sqrt{4+x^{3}}=2\left(t+\frac{t^{4}}{32}-\frac{t^{7}}{2^{7}(7)}+\frac{t^{10}}{2^{10}(10)}-\cdots\right)$
$\int_{0}^{0.5} \sqrt{4+x^{3}} \simeq 1+\frac{1}{2^{8}}-\frac{1}{2^{13}(7)} \simeq 1.003889$
\mid error $\left\lvert\, \leq \frac{1}{2^{19}(10)}=0.2 \times 10^{-6}\right.$
14. (a) $T_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$
$R_{3}(x)=\frac{-15(x-4)^{4}}{16(4!) z^{7 / 2}}$
(b) $T_{3}(4.1)=2+\frac{1}{4}(0.1)-\frac{1}{64}(0.1)^{2}+\frac{1}{512}(0.1)^{3} \simeq 2.0248457$
$\left|R_{2}(4.1)\right| \leq \frac{(15)(0.1)^{4}}{16(4!)\left(4^{7 / 2}\right)}=\frac{(15)(0.1)^{4}}{2^{11}(4!)} \simeq 3.0518 \times 10^{-8} \quad($ since $4<z<4.1)$
15. (i) Starting with the geometric series one can show $\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n}$ with $R=1$
(ii)

$$
\frac{1}{2 x+5}=(1 / 9)\left(\frac{1}{1+(2 / 9)(x-2)}\right)=(1 / 9) \sum_{n=0}^{\infty}(-2 / 9)^{n}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{(-2)^{n}(x-2)^{n}}{3^{2 n+2}}
$$

where $R=9 / 2$
16. (a) $f^{(6)}(0)=\frac{6!}{3}=240$
(b) $\ln (3 / 2)$

