1 Differential Equations

- 1. Find f(x) given $f''(x) = 3\sqrt{x}$, f'(1) = -1, and f(0) = 32.
- 2. Find f(x) fiven $f''(x) = 2x^{-1/3}$, f'(1) = 4, and f(0) = 2.
- 3. Solve the equation $y' = e^x$.

4. Solve the equation
$$\frac{d^2y}{dx^2} = x$$
 given that $y = 7$
when $x = 0$ and that $\frac{dy}{dx} = 4$ when $x = 2$.

- 5. If $\frac{d^2y}{dx^2} = -2x + 1$ find y in terms of x, given that $\frac{dy}{dx} = 1$ and y = -1 when x = 0.
- 6. If y'' = 1 6x find y in terms of x given that y' = -5 and $y = \frac{5}{2}$ when x = -1.
- 7. Find the function s(t) which satisfies the conditions: $s''(t) = e^t$; s'(0) = 0; s(0) = 0.
- 8. Find f(x) in terms of x given that $f''(x) = x^2 + 3x$, and that f'(1) = 1 and f(1) = 2.
- 9. Find f(x) given that $f''(x) = \frac{6}{x^2}$ and $f'(\frac{1}{3}) = 2$ and f(1) = 5.
- 10. If f''(x) = -6x; f'(2) = -14; f(2) = -9find f(x).
- 11. A point P(x, y) moves in a plane such that $\frac{dx}{dt} = \frac{1}{t}$ and $\frac{dy}{dt} = 2t 4$ for $t \ge 0$.
 - (a) Express x and y as functions of t if $x = \ln 2$ and y = 1 when t = 2.
 - (b) Express y as a function of x.
- 12. Given $f'(x) = 5x + \frac{6}{x^2}$ and f(2) = 3; find f(x).

Answers:

- 1. $\frac{4}{5}x^{5/2} 3x + 32$ 2. $\frac{9}{5}x^{5/3} + x + 2$
- 3. $e^x + C$
- 4. $\frac{1}{6}x^3 + 2x + 7$
- 5. $-\frac{1}{2}x^3 + \frac{1}{2}x^2 + x 1$
- 6. $\frac{1}{2}x^2 x^3 x$

7.
$$e^{t} - t - 1$$

1. 8. $\frac{1}{12}x^{4} + \frac{1}{2}x^{3} - \frac{5}{6}x + \frac{9}{4}$
9. $-6 \ln x + 20x - 15$
4. 10. $-x^{3} - 2x + 3$
11. (a) $x = \ln t$ and $y = t^{2} - (b)$ $y = e^{2x} - 4e^{x} + 5$
7 12. $\frac{5}{2}x^{2} - \frac{6}{x} - 4$

4t + 5