Distance Formulas

(1) Distance between a point and a plane

distance $=\left\|\operatorname{Proj}_{n} \mathrm{PQ}\right\|$
(2) Distance between a point and a line

Distance between 2 parallel planes

Distance between 2 parallel lines

$$
\begin{aligned}
& \mathrm{h}=\frac{\text { area of parallelogram }(\overrightarrow{\mathrm{d}} \text { and } \overrightarrow{\mathrm{QP}})}{\text { base }}=\frac{\text { twice area of } \triangle \mathrm{PQR}}{\text { base }} \\
& \frac{1}{2} \mathrm{~b} \mathrm{~h}=\frac{1}{2}\left\|\operatorname{Proj}_{\vec{n}} \overrightarrow{\mathrm{QP}}\right\| \Rightarrow \mathrm{h}=\frac{\|\overrightarrow{\mathrm{QP}} \times \overrightarrow{\mathrm{d}}\|}{\text { base }}=\frac{\|\overrightarrow{\mathrm{QP}} \times \overrightarrow{\mathrm{d}}\|}{\|\overrightarrow{\mathrm{d}}\|}
\end{aligned}
$$

(3) Distance between Skew Lines (skew lines sit on parallel planes)

DISTANCES

(1) Find the distance from $P(1,2,3)$ to a line L where

$$
\mathrm{L}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+t\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right) \quad\left(\text { distance }=\frac{2 \sqrt{26}}{\sqrt{17}} \approx 2.47 \text { units }\right)
$$

(2) Find the distance between the parallel lines L_{1} and L_{2}

$$
\mathrm{L}_{1}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-5
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right) ; \mathrm{L}_{2}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+s\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right) \quad\left(\text { distance }=\frac{\sqrt{179}}{\sqrt{30}} \approx 2.44 \text { units }\right)
$$

(3) Find the distance between the skew lines L_{1} and L_{2}

$$
\mathbf{L}_{1}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+t\left(\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right) ; \mathbf{L}_{2}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)+s\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \quad\left(\text { distance }=\frac{4}{\sqrt{171}} \approx 0.31 \text { unit }\right)
$$

Ex 3.5 \# 39 , 40

In class : (1) 39 (b) ; (2) 40 (b)
(3) Find the distance between the point $P(3,1,-2)$ and the line L

$$
\mathrm{L}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
5
\end{array}\right)+t\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right)
$$

(4) Find the distance between the skew lines

$$
\mathrm{L}_{1}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)+t\left(\begin{array}{c}
5 \\
-1 \\
4
\end{array}\right) ; \mathrm{L}_{2}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right)+s\left(\begin{array}{c}
1 \\
-3 \\
4
\end{array}\right)
$$

