(Marks)

- 1. Evaluate the derivative $\frac{\mathrm{d}}{\mathrm{d}x}\sin\left(\arccos\left(\sqrt{1-x^2}\right)\right)$ and simplify your answer.
- 2. Evaluate the following integrals.

(a)
$$\int_{1}^{\sqrt{2}} \frac{4 + 2\sqrt{x^2 - 1}}{x\sqrt{x^2 - 1}} \, \mathrm{d}x$$

(b)
$$\int_{1}^{5} \frac{x+2}{\sqrt{2x-1}} dx$$

(c)
$$\int e^{-2x} \cos(6x) dx$$

(d)
$$\int \sqrt{t+1} \ln \sqrt{t+1} \, dt$$

(d)
$$\int \sqrt{t+1} \ln \sqrt{t+1} \, dt$$
 (e) $\int_0^{\pi/2} \sin^3 x \cos^3 x \, dx$ (f) $\int \frac{dx}{x^2 \sqrt{x^2 - 36}}$

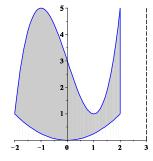
(f)
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 - 36}}$$

$$(g) \int \frac{x+4}{x(x^2+2)} \, \mathrm{d}x$$

3. Evaluate the following improper integrals.

(a)
$$\int_2^\infty \frac{1}{1 - x^2} \, \mathrm{d}x$$

(a)
$$\int_{2}^{\infty} \frac{1}{1-x^2} dx$$
 (b) $\int_{0}^{2} \frac{x}{x^2-4} dx$


4. Evaluate the following limits.

(a)
$$\lim_{x \to 0^+} \frac{(\ln x)^2}{1 + x^{-1}}$$

(b)
$$\lim_{x\to 0} (\sec x)^{\cot^2 x}$$

(a)
$$\lim_{x \to 0^+} \frac{(\ln x)^2}{1 + x^{-1}}$$
 (b) $\lim_{x \to 0} (\sec x)^{\cot^2 x}$ (c) $\lim_{x \to \infty} \left(\frac{x^2 + 2}{x - 3} - \frac{(x - 2)^3}{x^2 + 1} \right)$

- 5. Find the area of the region (in quadrant I) bounded by $y = \frac{2}{x}$, $y = \frac{3x}{x^2 + 2}$ and x = 1. Give the exact answer in simplified form only: no decimals.
- 6. Let \mathcal{R} be the region bounded by the graphs $y = \frac{x^2}{4}$, $y = x^3 - 3x + 3$, x = -2 and x = 2.
 - (a) Set up, but do not evaluate, the integral required to find the volume of the solid generated by revolving \mathcal{R} about the x-axis.

- (b) Find the volume of the solid generated by revolving \mathcal{R} about the line x=3. Give the exact answer in simplified form only: no decimals.
- 7. Find a solution to the differential equation $y' = \frac{\sqrt{1-y^2}}{1+x^2}$ that satisfies the initial condition y(1) = 0.
- 8. Let $\sum_{n=1}^{\infty} a_n$ be a series whose nth partial sum is given by $s_n = \frac{2n+1}{n+2}$.
 - (a) Evaluate $\sum_{n=0}^{\infty} a_n$. (b) Find a_5 .
- 9. Based only on the value of $\lim_{n\to\infty} a_n$ what can you say about the convergence of $\sum_{n=0}^{\infty} a_n$ for each of the following?

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n}$$
 (b) $\frac{1}{2} + 1 + \frac{1}{4} + 1 + \frac{1}{8} + 1 + \frac{1}{16} + 1 + \cdots$

(Marks)

10. Determine whether each of the following series converges or diverges; if it converges, find the sum. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2n+1}}$$
 (b) $\sum_{n=1}^{\infty} \ln\left(\frac{2n-1}{2n+1}\right)$

11. Determine whether each of the following series converges or diverges. State the tests you use and verify that the conditions for using them are satisfied.

(a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
 (b)
$$\sum_{k=1}^{\infty} \frac{\cos^2 k}{k\sqrt{k}}$$
 (c)
$$\sum_{n=1}^{\infty} \frac{e^{\sqrt{n}}}{\sqrt{n}}$$
 (d)
$$\sum_{n=2}^{\infty} \sin\left(\frac{2}{n}\right)$$

12. Determine whether each of the following series converges absolutely, conditionally or diverges. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{-n}{2n+1}\right)^{3n}$$
 (b) $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$

- 13. Find the radius and interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{3^n (x-2)^{n+1}}{2n+1}.$
- 14. Find the Taylor series of $f(x) = \cos 2x$ centred at $\pi/2$. State the first four non-zero terms and give the formula for the nth term.

ANSWERS

1.
$$\frac{x}{|x|}$$

2. (a) $\pi + \ln 2$ (b) $\frac{28}{3}$ (c) $\frac{e^{-2x}}{20}(3\sin 6x - \cos 6x) + C$ (d) $(t+1)^{2/3}\left(\frac{1}{3}\ln(t+1) - \frac{2}{9}\right) + C$ (e) $\frac{1}{12}$ (f) $\frac{\sqrt{x^2-36}}{36x} + C$ (g) $2\ln|x| - \ln(x^2+2) + \frac{1}{\sqrt{2}}\arctan\frac{x}{\sqrt{2}} + C$
3. (a) $-\frac{1}{2}\ln 3$ (b) DIV (to $-\infty$)
4. (a) 0 (b) \sqrt{e} (c) 9

5.
$$\int_{1}^{2} \left(\frac{2}{x} - \frac{3x}{x^2 + 2} \right) dx = \ln \sqrt{2}$$

6. (a)
$$\pi \int_{-2}^{2} \left((x^3 - 3x + 3)^2 - (x^2/4)^2 \right) dx$$
 (b) $2\pi \int_{-2}^{2} (3 - x) \left((x^3 - 3x + 3) - (x^2/4) \right) dx = \frac{352\pi}{5}$

7. $\arcsin y = \arctan x - \frac{\pi}{4}$ or $y = \sin \left(\arctan x - \frac{\pi}{4}\right)$ $x \ge -1$

8. (a) 2 (b) $\frac{1}{14}$ 9. (a) $\lim a_n = 0 \Rightarrow \text{ no conclusion.}$ (b) $\lim a_n \neq 0 \Rightarrow \sum a_n$ DIV 10. (a) $-\frac{320}{39}$ (b) DIV $(\text{to} -\infty)$

11. (a) CONV (RT) (b) CONV (DCT with $\sum \frac{1}{k^{3/2}}$) (c) DIV (NTT) (d) DIV (LCT with $\sum \frac{1}{n}$)

12. (a) CONV ABS (NRT) (b) CONV COND (DCT with $\sum \frac{1}{n^{1/2}}$ & AST)

13. $\frac{1}{3}$, $\left|\frac{5}{3}, \frac{7}{3}\right|$

14.
$$-1 + 2(x - \frac{\pi}{2})^2 - \frac{2}{3}(x - \frac{\pi}{2})^4 + \frac{4}{45}(x - \frac{\pi}{2})^6 - \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2^{2n}(x - \frac{\pi}{2})^{2n}}{(2n)!}$$