1. Given $f(x)=2 x \arctan 2 x-\frac{1}{2} \log \left(1+4 x^{2}\right)+\arcsin \frac{2}{3}$.
a. Find $f^{\prime}(x)$ and simplify your answer.
b. Evaluate $f^{\prime}\left(\frac{1}{2}\right)$
2. Evaluate each of the following limits, using ∞ and $-\infty$ when appropriate.
a. $\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{2 x}$
b. $\lim _{x \rightarrow 0^{+}}\left(e^{-2 / x} \log x\right)$
c. $\lim _{x \rightarrow 0} \frac{e^{6 x}-6 x-1}{x^{2}}$
3. Evaluate each of the following integrals.
a. $\int \frac{2 x+1}{\sqrt{x-3}} d x$
b. $\int \frac{9 x-1}{(x-3)\left(x^{2}+4\right)} d x$
c. $\int x \operatorname{arcsec} x d x$
d. $\int_{0}^{\frac{1}{4} \pi} \sin ^{3} 2 x \cos ^{4} 2 x d x$
e. $\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$
f. $\int e^{3 x} \sin x d x$
g. $\int \frac{d x}{\sqrt{9 x^{2}-16}}$
4. Evaluate each of the following improper integrals.
a. $\int_{1}^{\frac{2}{3} \sqrt{ } 3} \frac{d x}{x \sqrt{x^{2}-1}}$
b. $\int_{4}^{\infty} \frac{d x}{x \log x}$
5. Solve the differential equation

$$
2 y \frac{d y}{d x}=y^{2}-1 ; \quad y(0)=2
$$

6. Sketch the region enclosed by $y=2 / x-1$ and $y=2-x$, and find its area.
7. Let \mathscr{R} be the region enclosed by $y=\sin x^{2}$ and the x-axis on $[0, \sqrt{ } \pi]$.
a. Find the volume of the solid obtained by revolving \mathscr{R} about the y-axis.
b. Set up, but do not evaluate, an integral that represents the volume of the solid obtained by revolving \mathscr{R} about the x-axis.
8. Determine whether the sequence converges or diverges; if it converges, find its limit.
a. $\left\{1+\cos \frac{1}{2}(2 n+1) \pi\right\} \quad$ b. $\left\{(-1)^{n} \frac{3 n^{2}+n-2}{n^{2}}\right\}$
9. Determine whether each statement is true or false. Justify each answer, with a proof or a counterexample, as appropriate).
a. If $\lim \left|a_{n}\right| \neq 0$ then $\lim a_{n} \neq 0$.
b. If $\lim a_{n}=0$ then $\sum_{n=1}^{\infty} \sin a_{n}$ converges.
10. Find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{3^{n+1}+2^{n}}{4^{n}}
$$

11. Classify each of the following series as convergent or divergent, and justify your answers.
a. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)$
b. $\sum_{n=1}^{\infty}\left(\frac{2 n-e}{n^{2}}\right)^{2 n}$
c. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}-1}}{n^{2}+1}$
d. $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
12. Classify each of the following series as absolutely convergent, conditionally convergent or divergent. Justify your answers.
a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\arctan n}{n^{3}+1}$
b. $\sum_{n=1}^{\infty}(-1)^{n} \cos \frac{1}{n}$
c. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$
13. Determine the radius and interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{3^{n-1}(x+1)^{n}}{n \sqrt{n+1}}
$$

14. Let $f(x)=\log (1+x)$.
a. Write the first five non-zero terms of the Maclaurin series of f.
b. Find a formula for the $k^{\text {th }}$ term of the Maclaurin series, and write the series using sigma notation.

Solution outlines

1. a. $f^{\prime}(x)=2 \arctan 2 x+\frac{4 x}{1+4 x^{2}}-\frac{4 x}{1+4 x^{2}}+0=2 \arctan 2 x$.
b. $f^{\prime}\left(\frac{1}{2}\right)=2 \arctan 1=\frac{1}{2} \pi$.
2. a. One application of l'Hôpital's rule gives

$$
\lim _{x \rightarrow \infty}\{2 x \log (1+4 / x)\}=2 \lim _{t \rightarrow 0^{+}} \frac{\log (1+4 t)}{t}=8 \lim _{t \rightarrow 0^{+}} \frac{1}{1+4 t}=8
$$

where $t=1 / x$, so the limit in question is equal to e^{8}.
b. One application of l'Hôpital's rule, after letting $t=1 / x$, gives

$$
\lim _{x \rightarrow 0^{+}}\left(e^{-2 / x} \log x\right)=-\lim _{t \rightarrow \infty} \frac{\log t}{e^{2 t}}=-\lim _{t \rightarrow \infty} \frac{1}{2 t e^{2 t}}=0
$$

c. Two applications of l'Hôpital's rule gives

$$
\lim _{x \rightarrow 0} \frac{e^{6 x}-6 x-1}{x^{2}}=3 \lim _{x \rightarrow 0} \frac{e^{6 x}-1}{x}=18 \lim _{x \rightarrow 0} e^{6 x}=18
$$

3. a. Repeated partial integration (integrating the the fractional power and differentiating the polynomial) gives

$$
\begin{aligned}
\int \frac{2 x+1}{\sqrt{x-3}} d x & =2(2 x+1) \sqrt{x-3}-\frac{8}{3}(x-3)^{3 / 2}+C \\
& =\frac{2}{3}(2 x+15) \sqrt{x-3}+C
\end{aligned}
$$

b. Resolving the integrand into partial fractions and then integrating term by term yields

$$
\begin{aligned}
\int \frac{9 x-1}{(x-3)\left(x^{2}+4\right)} d x & =\int\left\{\frac{2}{x-3}-\frac{2 x-3}{x^{2}+4}\right\} d x \\
& =\log \frac{(x-3)^{2}}{x^{2}+4}+\frac{3}{2} \arctan \frac{1}{2} x+C
\end{aligned}
$$

c. Partial integration gives

$$
\begin{aligned}
\int x \operatorname{arcsec} x d x & =\frac{1}{2} x^{2} \operatorname{arcsec} x-\frac{1}{2} \int \frac{x}{\sqrt{x^{2}-1}} d x \\
& =\frac{1}{2} x^{2} \operatorname{arcsec} x-\frac{1}{2} \sqrt{x^{2}-1}+C
\end{aligned}
$$

d. Changing the variable of integration to $t=\cos (2 x)$ gives

$$
\int_{0}^{\frac{1}{4} \pi} \sin ^{3} 2 x \cos ^{4} 2 x d x=\frac{1}{2} \int_{0}^{1} t^{4}\left(1-t^{2}\right) d t=\left.\frac{1}{70} t^{5}\left(7-5 t^{2}\right)\right|_{0} ^{1}=\frac{1}{35}
$$

e. Changing the variable of integration to $t=\arcsin x$ gives

$$
\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x=\int_{0}^{\frac{1}{6} \pi} t d t=\left.\frac{1}{2} t^{2}\right|_{0} ^{\frac{1}{6} \pi}=\frac{1}{72} \pi^{2}
$$

f. Repeated partial integration (integrating the trigonometric function and differentiating the exponential function) gives

$$
\int e^{3 x} \sin x d x=-e^{3 x} \cos x+3 e^{3 x} \sin x-9 \int e^{3 x} \sin x d x
$$

and therefore

$$
\int e^{3 x} \sin x d x=\frac{1}{10} e^{3 x}(3 \sin x-\cos x)+C
$$

g. Applying a standard integral formula gives

$$
\int \frac{d x}{\sqrt{9 x^{2}-16}}=\frac{1}{3} \log \left|3 x+\sqrt{9 x^{2}-16}\right|+C
$$

4. a. A standard integral formula gives

$$
\int_{1}^{\frac{2}{3} \sqrt{ } 3} \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} \frac{2}{3} \sqrt{ } 3-\operatorname{arcsec} 1=\frac{1}{6} \pi
$$

since arcsec is continuous on $\left[1, \frac{2}{3} \sqrt{ } 3\right]$.
b. One has

$$
\int_{4}^{\infty} \frac{d x}{x \log x}=\lim _{t \rightarrow \infty} \log \log t-\log \log 4=\infty
$$

(so the integral diverges).
5. Separating variables and integrating gives
$\int \frac{2 y}{y^{2}-1} d y=\int d x, \quad$ or $\quad \log \left|y^{2}-1\right|=x+C, \quad$ i.e., $\quad y^{2}=A e^{x}+1$, where $A= \pm e^{C}$. Now $y(0)=2$ gives $A=3$ and $y>1$, and so $y=\sqrt{3 e^{x}+1}$.
6. Below is a sketch of the region in question.

The curves meet where $2-x=2 / x-1$, or $0=x^{2}-3 x+2=(x-1)(x-2)$, i.e., where $x=1$ or $x=2$. On $(1,2)$ the line is above the hyperbola, so the area of the region in question is

$$
\begin{aligned}
\int_{1}^{2}\{(2-x)-(2 / x-1)\} d x & =\int_{1}^{2}(3-x-2 / x) d x \\
& =\left.\left(3 x-\frac{1}{2} x^{2}-2 \log x\right)\right|_{1} ^{2} \\
& =\frac{3}{2}-2 \log 2
\end{aligned}
$$

7. a. The solid obtained by revolving \mathscr{R} about the y-axis can be decomposed into cylindrical shells of radius x and height $\sin x^{2}$, for $0 \leqslant x \leqslant \sqrt{ } \pi$, so its volume is equal to

$$
2 \pi \int_{0}^{\sqrt{ } \pi} x \sin x^{2} d x=-\left.\pi \cos x^{2}\right|_{0} ^{\sqrt{ } \pi}=2 \pi
$$

b. The solid obtained by revolving \mathscr{R} about the x-axis can be decomposed into disks of radius $\sin x^{2}$, for $0 \leqslant x \leqslant \sqrt{ } \pi$, so its volume is represented by the integral

$$
\pi \int_{0}^{\sqrt{ } \pi} \sin ^{2} x^{2} d x
$$

8. a. Since $\cos \frac{1}{2}(2 n+1) \pi=0$ for every natural number n, the given sequence converges to 1 (each of its terms is equal to 1).
b. Let a_{n} denote the general term of the given sequence. Since $\lim a_{2 n}=3$ and $\lim a_{2 n+1}=-3$, it follows that $\left\{a_{n}\right\}$ has no limit.
9. a. This statement is true. For if $\lim \left|a_{n}\right| \neq 0$, there is a positive real number ε_{0} such that for any natural number N there is a natural number $n \geqslant N$ for which $\left|\left|a_{n}\right|-0\right| \geqslant \varepsilon_{0}$, i.e., $\left|a_{n}-0\right| \geqslant \varepsilon_{0}$, which means that $\lim a_{n} \neq 0$ by definition. b. This statement is false. For example,

$$
a_{n}=\arcsin \frac{1}{n} \rightarrow 0, \quad \text { and } \quad \sum_{n=1}^{\infty} \sin a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

is the harmonic series, which diverges.
10. The given series is the sum of two geometric series, and in fact

$$
\sum_{n=0}^{\infty} \frac{3^{n+1}+2^{n}}{4^{n}}=\sum_{n=0}^{\infty} 3\left(\frac{3}{4}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{3}{1-\frac{3}{4}}+\frac{1}{1-\frac{1}{2}}=14
$$

11. a. The given series diverges because it is the difference of a divergent $(p=1)$ and a convergent $(p=2) p$-series. (Alternatively, the given series diverges with the harmonic series because its terms are larger than $\frac{3}{4} n^{-1}$ if $n>2$.)
b. Since

$$
\lim \sqrt[n]{\left|\frac{2 n-e}{n^{2}}\right|^{2 n}}=\lim \frac{(2-e / n)^{2}}{n^{2}}=0
$$

the series converges by the Root Test.
c. If $n>1$ then $n^{3}-1>\frac{1}{4} n^{3}, n^{2}+1<2 n^{2}$, and therefore

$$
\frac{\sqrt{n^{3}-1}}{n^{2}+1}>\frac{1}{4} n^{-1 / 2}
$$

so the series in question diverges with $\sum n^{-1 / 2}\left(p=\frac{1}{2}\right)$ by the Comparison Test. (Alternatively, the Limit Comparison Test could be used.)
d. Since

$$
\frac{(n!)^{2}}{(2 n)!}=\frac{1}{2^{n}} \cdot \frac{n(n-1) \cdots 2 \cdot 1}{(2 n-1)(2 n-3) \cdots 3 \cdot 1} \leqslant \frac{1}{2^{n}}
$$

the given series converges by the Comparison Test. (Alternatively, the Ratio test could be used.)
12. a. Since

$$
0<\frac{\arctan n}{n^{3}+1}<\frac{1}{2} \pi n^{-3}, \quad \text { for } \quad n>0
$$

the series in question is absolutely convergent by the Comparison Test.
b. Since $\lim \cos \frac{1}{n}=1$, the series in question diverges by the vanishing criterion.
c. Let $a_{n}=n /\left(n^{2}+1\right)$. If $n>1$ then $a_{n}>\frac{1}{2} n^{-1}$, and so $\sum(-1)^{n} a_{n}$ is not absolutely convergent by the Comparison Test. However, $a_{n}>0,\left\{a_{n}\right\}$ is decreasing since

$$
\frac{d}{d x}\left\{\frac{x}{x^{2}+1}\right\}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}<0 \quad \text { if } \quad x>1
$$

and

$$
\lim a_{n}=\lim \frac{1}{n} \cdot \frac{1}{1+1 / n^{2}}=0
$$

so $\sum(-1)^{n} a_{n}$ converges by the Alternating Series Test. Therefore, $\sum(-1)^{n} a_{n}$ is conditionally convergent.
13. Let u_{n} denote the general term of the series in question. Then

$$
\lim \left|\frac{u_{n+1}}{u_{n}}\right|=\frac{3|x+1|}{\sqrt{(1+1 / n)(1+2 / n)}}=3|x+1|
$$

so $\sum u_{n}$ is absolutely convergent if $|x+1|<\frac{1}{3}$, i.e., $-\frac{4}{3}<x<-\frac{2}{3}$, by the Ratio Test. This means that the radius of convergence of $\sum u_{n}$ is $\frac{1}{3}$. If $x=-\frac{4}{3}$ or $x=-\frac{2}{3}$ then

$$
\left|u_{n}\right|=\frac{1}{n \sqrt{n+1}}<n^{-3 / 2}
$$

and so $\sum u_{n}$ is (absolutely) convergent by the Comparison Test. Therefore, the interval of convergence of $\sum u_{n}$ is $\left[-\frac{4}{3},-\frac{2}{3}\right]$.
14. We have

$$
\begin{align*}
f(x) & =\log (1+x)=\int_{0}^{x} \frac{d t}{1+t}=\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{x} t^{k} d t \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k} \tag{b.}\\
& =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5}-\cdots \tag{a.}
\end{align*}
$$

