
Sample examinations Calculus II (201-NYB-05) Autumn 2009

1. Givenf(x) = 2x arctan 2x− 1

2
log(1 + 4x2) + arcsin 2

3
.

a. Findf ′(x) and simplify your answer. b. Evaluatef ′
(

1

2

)

2. Evaluate each of the following limits, using∞ and−∞ when appropriate.

a. lim
x→∞

(

1 +
4

x

)2x

b. lim
x→0+

(

e−2/x log x
)

c. lim
x→0

e6x − 6x− 1

x2

3. Evaluate each of the following integrals.

a.
∫

2x+ 1√
x− 3

dx b.
∫

9x− 1

(x− 3)(x2 + 4)
dx

c.
∫

x arcsec xdx d.
∫ 1

4
π

0

sin3 2x cos4 2x dx

e.
∫ 1

2

0

arcsinx√
1− x2

dx f.
∫

e3x sinx dx g.
∫

dx√
9x2 − 16

4. Evaluate each of the following improper integrals.

a.
∫

2

3

√
3

1

dx

x
√
x2 − 1

b.
∫ ∞

4

dx

x log x

5. Solve the differential equation

2y
dy

dx
= y2 − 1; y(0) = 2.

6. Sketch the region enclosed byy = 2/x− 1 andy = 2− x, and find its area.

7. Let R be the region enclosed byy = sinx2 and thex-axis on[ 0,
√
π ].

a. Find the volume of the solid obtained by revolvingR about they-axis.

b. Set up, but do not evaluate, an integral that represents the volume of the solid
obtained by revolvingR about thex-axis.

8. Determine whether the sequence converges or diverges; if itconverges, find its
limit.

a.
{

1 + cos 1

2
(2n+ 1)π

}

b.

{

(−1)n
3n2 + n− 2

n2

}

9. Determine whether each statement is true or false. Justify each answer, with a
proof or a counterexample, as appropriate).

a. If lim|an| 6= 0 thenliman 6= 0.

b. If liman = 0 then
∞
∑

n=1

sinan converges.

10. Find the sum of the series
∞
∑

n=0

3n+1 + 2n

4n
.

11. Classify each of the following series as convergent or divergent, and justify
your answers.

a.
∞
∑

n=1

(

1

n
− 1

n2

)

b.
∞
∑

n=1

(

2n− e

n2

)2n

c.
∞
∑

n=1

√
n3 − 1

n2 + 1
d.

∞
∑

n=0

(n!)2

(2n)!

12. Classify each of the following series as absolutely convergent, conditionally
convergent or divergent. Justify your answers.

a.
∞
∑

n=1

(−1)n
arctann

n3 + 1
b.

∞
∑

n=1

(−1)n cos
1

n
c.

∞
∑

n=1

(−1)n
n

n2 + 1

13. Determine the radius and interval of convergence of the series
∞
∑

n=1

3n−1(x+ 1)n

n
√
n+ 1

.

14. Let f(x) = log(1 + x).
a. Write the first five non-zero terms of the Maclaurin series of f .

b. Find a formula for thekth term of the Maclaurin series, and write the series
using sigma notation.

Solution outlines

1. a. f ′(x) = 2 arctan 2x+
4x

1 + 4x2
− 4x

1 + 4x2
+ 0 = 2 arctan 2x.

b. f ′
(

1

2

)

= 2arctan 1 = 1

2
π.

2. a. One application of l’Hôpital’s rule gives

lim
x→∞

{

2x log(1 + 4/x)
}

= 2 lim
t→0+

log(1 + 4t)

t
= 8 lim

t→0+

1

1 + 4t
= 8,

wheret = 1/x, so the limit in question is equal toe8.

b. One application of l’Hôpital’s rule, after lettingt = 1/x, gives

lim
x→0+

(

e−2/x log x
)

= − lim
t→∞

log t

e2t
= − lim

t→∞

1

2te2t
= 0.

c. Two applications of l’Hôpital’s rule gives

lim
x→0

e6x − 6x− 1

x2
= 3 lim

x→0

e6x − 1

x
= 18 lim

x→0
e6x = 18.

3. a. Repeated partial integration (integrating the the fractional power and differ-
entiating the polynomial) gives

∫

2x+ 1√
x− 3

dx = 2(2x+ 1)
√
x− 3− 8

3
(x− 3)3/2 + C

= 2

3
(2x+ 15)

√
x− 3 + C.

b. Resolving the integrand into partial fractions and then integrating term by term
yields

∫

9x− 1

(x− 3)(x2 + 4)
dx =

∫ {

2

x− 3
− 2x− 3

x2 + 4

}

dx

= log
(x− 3)2

x2 + 4
+ 3

2
arctan 1

2
x+ C.

c. Partial integration gives
∫

x arcsec xdx = 1

2
x2 arcsecx− 1

2

∫

x√
x2 − 1

dx

= 1

2
x2 arcsecx− 1

2

√

x2 − 1 + C.

d. Changing the variable of integration tot = cos(2x) gives
∫ 1

4
π

0

sin3 2x cos4 2x dx = 1

2

∫

1

0

t4(1− t2) dt = 1

70
t5(7− 5t2)

∣

∣

∣

∣

1

0

= 1

35
.

e. Changing the variable of integration tot = arcsinx gives
∫ 1

2

0

arcsinx√
1− x2

dx =

∫ 1
6
π

0

t dt = 1

2
t2

∣

∣

∣

∣

1
6
π

0

= 1

72
π2.

f. Repeated partial integration (integrating the trigonometric function and differ-
entiating the exponential function) gives

∫

e3x sinxdx = −e3x cos x+ 3e3x sinx− 9

∫

e3x sinxdx,

and therefore
∫

e3x sinx dx = 1

10
e3x(3 sinx− cos x) + C.

g. Applying a standard integral formula gives
∫

dx√
9x2 − 16

= 1

3
log|3x+

√

9x2 − 16 |+ C.
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4. a. A standard integral formula gives
∫ 2

3

√
3

1

dx

x
√
x2 − 1

= arcsec 2

3

√
3− arcsec 1 = 1

6
π,

sincearcsec is continuous on[ 1, 2

3

√
3 ].

b. One has
∫ ∞

4

dx

x log x
= lim

t→∞
log log t− log log 4 = ∞

(so the integral diverges).

5. Separating variables and integrating gives
∫

2y

y2 − 1
dy =

∫

dx, or log|y2 − 1| = x+ C, i.e., y2 = Aex + 1,

whereA = ±eC . Nowy(0) = 2 givesA = 3 andy > 1, and soy =
√
3ex + 1.

6. Below is a sketch of the region in question.

y =
2

x
− 1y = 2− x

x

y

The curves meet where2−x = 2/x− 1, or0 = x2 − 3x+2 = (x− 1)(x− 2),
i.e., wherex = 1 or x = 2. On( 1, 2 ) the line is above the hyperbola, so the area
of the region in question is

∫

2

1

{

(2 − x)− (2/x− 1)
}

dx =

∫

2

1

(3− x− 2/x) dx

= (3x− 1

2
x2 − 2 log x)

∣

∣

∣

∣

2

1

= 3

2
− 2 log 2.

7. a. The solid obtained by revolvingR about they-axis can be decomposed into
cylindrical shells of radiusx and heightsinx2, for 0 6 x 6

√
π, so its volume is

equal to

2π

∫

√
π

0

x sinx2 dx = −π cos x2

∣

∣

∣

∣

√
π

0

= 2π.

b. The solid obtained by revolvingR about thex-axis can be decomposed into
disks of radiussinx2, for 0 6 x 6

√
π, so its volume is represented by the

integral

π

∫

√
π

0

sin2 x2 dx.

8. a. Sincecos 1

2
(2n+ 1)π = 0 for every natural numbern, the given sequence

converges to1 (each of its terms is equal to1).

b. Letan denote the general term of the given sequence. Sincelima2n = 3 and
lima

2n+1
= −3, it follows that{an} has no limit.

9. a. This statement is true. For iflim|an| 6= 0, there is a positive real number
ε0 such that for any natural numberN there is a natural numbern > N for which
||an| − 0| > ε0, i.e., |an − 0| > ε0, which means thatliman 6= 0 by definition.

b. This statement is false. For example,

an = arcsin
1

n
→ 0, and

∞
∑

n=1

sinan =
∞
∑

n=1

1

n

is the harmonic series, which diverges.

10. The given series is the sum of two geometric series, and in fact
∞
∑

n=0

3n+1 + 2n

4n
=

∞
∑

n=0

3
(

3

4

)n
+

∞
∑

n=0

(

1

2

)n
=

3

1− 3

4

+
1

1− 1

2

= 14.

11. a. The given series diverges because it is the difference of adivergent (p = 1)
and a convergent (p = 2) p-series. (Alternatively, the given series diverges with
the harmonic series because its terms are larger than3

4
n−1 if n > 2.)

b. Since

lim
n

√

∣

∣

∣

∣

2n− e

n2

∣

∣

∣

∣

2n

= lim
(2− e/n)2

n2
= 0,

the series converges by the Root Test.

c. If n > 1 thenn3 − 1 > 1

4
n3, n2 + 1 < 2n2, and therefore
√
n3 − 1

n2 + 1
> 1

4
n−1/2;

so the series in question diverges with
∑

n−1/2 (p = 1

2
) by the Comparison Test.

(Alternatively, the Limit Comparison Test could be used.)

d. Since
(n!)2

(2n)!
=

1

2n
· n(n− 1) · · · 2 · 1
(2n− 1)(2n − 3) · · · 3 · 1

6
1

2n
,

the given series converges by the Comparison Test. (Alternatively, the Ratio test
could be used.)

12. a. Since

0 <
arctann

n3 + 1
< 1

2
πn−3, for n > 0,

the series in question is absolutely convergent by the Comparison Test.

b. Sincelim cos 1

n
= 1, the series in question diverges by the vanishing criterion.

c. Let an = n/(n2 + 1). If n > 1 thenan > 1

2
n−1, and so

∑

(−1)nan is
not absolutely convergent by the Comparison Test. However,an > 0, {an} is
decreasing since

d

dx

{

x

x2 + 1

}

=
1− x2

(x2 + 1)2
< 0 if x > 1,

and

liman = lim
1

n
· 1

1 + 1/n2
= 0,

so
∑

(−1)nan converges by the Alternating Series Test. Therefore,
∑

(−1)nan
is conditionally convergent.

13. Let un denote the general term of the series in question. Then

lim

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

=
3|x+ 1|

√

(1 + 1/n)(1 + 2/n)
= 3|x+ 1|,

so
∑

un is absolutely convergent if|x + 1| < 1

3
, i.e., − 4

3
< x < − 2

3
, by the

Ratio Test. This means that the radius of convergence of
∑

un is 1

3
. If x = − 4

3

or x = − 2

3
then

|un| =
1

n
√
n+ 1

< n−3/2,

and so
∑

un is (absolutely) convergent by the Comparison Test. Therefore, the
interval of convergence of

∑

un is
[

− 4

3
,− 2

3

]

.

14. We have

f(x) = log(1 + x) =

∫ x

0

dt

1 + t
=

∞
∑

k=0

(−1)k
∫ x

0

tk dt

=
∞
∑

k=1

(−1)k−1

k
xk (b.)

= x− 1

2
x2 + 1

3
x3 − 1

4
x4 + 1

5
x5 − · · · (a.)

2


