$$B = \left[\begin{array}{ccccccc} 1 & 2 & 0 & -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

- (a) Find the rank of A.
- (b) Find a basis for Col(A). What is its dimension?
- (c) Write the 6th and 7th column of A as a linear combination of the vectors obtained in (b).
- (d) Find a basis for Nul(A). What is its dimension?
- (e) Find a basis for Row(A).
- (f) Write the first row of A as a linear combination of the vectors obtained in (e).
- (g) What is the dimension of $Nul(A^T)$?

$$[10] \qquad 2. \text{ Let } \mathbf{u}_1 = \begin{bmatrix} 1\\3\\1\\0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 2\\0\\1\\0 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \ \mathbf{u}_4 = \begin{bmatrix} 3\\9\\7\\3 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}, \ \text{and} \ \mathbf{w} = \begin{bmatrix} 1\\k\\-3\\2k \end{bmatrix}.$$

- (a) Find a condition on x_1, x_2, x_3 and x_4 that is necessary and sufficient for the vector \mathbf{v} to be in the subspace Span{ $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ }.
- (b) Are the following sets of vectors linearly dependent or independent?
 - i. $\{{\bf u}_1,{\bf u}_3\}$
 - ii. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_4\}$
 - iii. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$
- (c) For what values of k is **w** in the span of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$?
- (d) Give a basis for $\operatorname{Span}\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\}$ such that none of the vectors $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4$ is included in your basis.

[10] 3. Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and define the linear transformations

$$T_1: \mathbb{R}^2 \to \mathbb{R}^3 \text{ by } T_1(\mathbf{x}) = A\mathbf{x}, \text{ and}$$

$$T_2: \mathbb{R}^3 \to \mathbb{R}^2 \text{ by } T_2(\mathbf{x}) = A^T \mathbf{x}.$$

Also, let S denote the unit square in \mathbb{R}^2 , that is

$$\mathcal{S} = \left\{ \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] : 0 \le x_1 \le 1 \text{ and } 0 \le x_2 \le 1 \right\},$$

and let \mathcal{L} be the line in \mathbb{R}^3 defined by

$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}.$$

- (a) What is $T_1\left(\begin{bmatrix} -1\\3 \end{bmatrix}\right)$? What is $T_2\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right)$?
- (b) Find $(T_2 \circ T_1)(\mathcal{S})$. Draw pictures of \mathcal{S} and $(T_2 \circ T_1)(\mathcal{S})$. $((T_2 \circ T_1)(\mathcal{S})$ denotes the set of images of the vectors in the unit square \mathcal{S} , under the linear transformation $T_2 \circ T_1$.)
- (c) Find $(T_1 \circ T_2)(\mathcal{L})$.
- (d) Fill in the following table with YES or NO as appropriate.

	onto	one-to-one
T_1		
T_2		
$T_1 \circ T_2$		
$T_2 \circ T_1$		

4. Let [10]

$$A = \begin{bmatrix} 1 & 2 & 7 \\ 1 & 0 & -4 \end{bmatrix}, B = \begin{bmatrix} 6 & 0 \\ -2 & 8 \\ 1 & -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 5 & 1 \\ -3 & 3 \end{bmatrix}$$

- (a) i. Evaluate AB + 3C.
 - ii. If possible, find a matrix X such that 3CX = I ABX. (You should try to solve for X using matrix algebra.)
 - iii. What is the rank of the 5×5 matrix

$$\begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}?$$

- (b) Let Y be an $n \times 2$ matrix. Fill in the blanks with must, might or cannot to make each of the following statements true.

 - i. If Y has two pivot positions then YC ______ be invertible and CY^T _____ be invertible. ii. If Y has one pivot position then YC ______ have linearly independent columns, and CY^T have linearly independent columns.

[6] 5. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & -2 & 0 & -3 \\ 1 & -2 & 3 & 4 \end{bmatrix}$$

- (a) Find the following determinants:
 - i. $\det(A)$
 - ii. det(-3A)
 - iii. $\det(A^{-2})$
 - iv. $\det(PAP^{-1})$ where P is a 4×4 invertible matrix.
 - v. det(BAB) where B is a singular (i.e. non-invertible) matrix.
 - vi. det(D) where D is the reduced row echelon form of the matrix A.
- (b) Use the determinant of A^{-1} to find adj (A^{-1}) .
- [4] 6. Find all values of s for which the following system is inconsistent. For full marks show the work that justifies your answer.

$$3sx_1 + 2x_2 = 4$$

$$6x_1 + sx_2 = -4$$

- [10] 7. An $n \times n$ matrix B is called idempotent if $B^2 = B$.
 - (a) Suppose that B is an $n \times n$ idempotent matrix
 - i. Show that $\det B = 0$ or $\det B = 1$.
 - ii. Show that if $\det B = 1$ then B = I. (I is the $n \times n$ identity matrix.)
 - iii. Show that I B is also idempotent.
 - (b) For what values of a and b is $\begin{bmatrix} 2 & 3 \\ a & b \end{bmatrix}$ idempotent?
 - (c) Let A be any $n \times n$ matrix. Show that

$$\left[\begin{array}{cc} A & \frac{1}{k}A \\ k(I-A) & I-A \end{array}\right]$$

is idempotent, where k is any non-zero scalar.

[6] 8. Let V be the subspace of the space of all 2×2 matrices defined by

$$V = \left\{ X : \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] X = X \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \right\}.$$

- (a) Is O (the 2×2 zero matrix) in V?
- (b) Is I_2 (the 2×2 identity matrix) in V?
- (c) For what a is $\begin{bmatrix} 2 & 2 \\ 3 & a \end{bmatrix}$ in V?
- (d) Find a basis for V.
- (e) Write the matrix you found in part (c) as a linear combination of the basis matrices you found in part (d).
- [4] 9. Which of the following sets are subspaces of P_2 , the space of polynomials of degree at most 2. If a set is a subspace, give a basis of the subspace. If a set is not a subspace, explain why it is not a subspace. (No marks unless you give an adequate explanation of why a set is not a subspace.)
 - (a) $\{p(x): p'(1) = 0\}$
 - (b) $\{p(x): \int_0^1 p(x)dx = 1\}$
- [10] 10. Given the points P(0,0,1), Q(1,1,2), R(4,6,5) and S(6,11,10), find the following:
 - (a) a normal to the plane containing the points P, Q and R.
 - (b) the standard equation of the plane containing the points P, Q and R. (The standard equation has the form ax + by + cz = d.)
 - (c) the standard equation of the plane through the origin parallel to the plane found in part (b).
 - (d) the area of triangle PQR
 - (e) the volume of the parallelepiped three of whose sides are PQ, PR and PS.
 - (f) the distance between the point S and the plane found in part (b).
- [10] 11. The identity

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

is true for any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^3 .

- (a) Fill in the blanks with must, might or cannot to make each of the following statements true.
 - i. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ _____ lie in the span of the vectors $3\mathbf{v}$ and $5\mathbf{w}$
 - ii. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be orthogonal to the vector $2\mathbf{v} \times (-4\mathbf{w})$
 - iii. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be a solution of $\mathbf{v} \cdot \mathbf{x} = 0$ and $\mathbf{w} \cdot \mathbf{x} = 0$.
 - iv. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be parallel to the vector \mathbf{u} .
- (b) Give a specific numeric example of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \mathbf{v}$.
- (c) Use the identity to simplify $(\mathbf{u} \times \mathbf{w}) \times (\mathbf{v} \times \mathbf{w})$.

- (d) Apply the identity to write $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ as a linear combination of \mathbf{u} and \mathbf{v} .
- [7] 12. Consider the planes 4x + y 3z = 7 and 2x 3y + 3z = 4.
 - (a) Find their line of intersection.
 - (b) For each of the above two planes, find a normal, and the find the angle between these two normals (in radians, 2 decimal places).
- [3] 13. Find the point of intersection of the line

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}, \ t \in \mathbb{R}$$

with the plane containing both the y-axis and the z-axis.