(Marks)

1. Given the matrix $A=\left[\begin{array}{cccc}1 & 4 & -1 & 1 \\ -2 & -8 & -2 & 6 \\ 3 & 12 & -1 & -1\end{array}\right]$:
(a) Solve the system $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}2 \\ -4 \\ 6\end{array}\right]$.
(b) Solve the system $A \mathbf{x}=\mathbf{0}$.
2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the rule

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}, x_{2}+x_{3}, 2 x_{3}-x_{4}\right)
$$

(a) Find the standard matrix for T.
(b) Is T one-to-one? Justify.
(c) Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ? Justify.
3. Given the system of linear equations:
$x+y-y=0$
$x+(k+1) y+c 2 z=0$
$x+y+(k-5) z=0$
find all values of k (if any) for which the system has:
a) no solutions
b) a unique solution
c) infinitely many solutions
4. Find a second degree polynomial whose curve contains the points $(1,1)$ and $(2,6)$ and whose derivative at $x=1$ is 4 .
5. If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3\end{array}\right]$ find A^{-1}.
6. Find an $L U$-factorization for the matrix $\left[\begin{array}{lll}1 & -1 & 2 \\ 3 & -1 & 7 \\ 2 & -4 & 5\end{array}\right]$.
7. Let A be the block matrix $A=\left[\begin{array}{rr}I & M \\ N & 0\end{array}\right]$ where M and N are $n \times n$ invertible matrices. Find the block form of A^{-1}.
8. If $A=\left[\begin{array}{rrr}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$, it is given that $A^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$

Use A^{-1} to find $\left(A A^{T}\right)^{-1}$.
9. Given $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(A)=5$

Find:
(a) $|4 A|$
(b) $\left|A A^{T}\right|$
(c) $|\operatorname{adj}(A)|$
(d) $\left|\begin{array}{ccc}a & b & c \\ g+3 a & h+3 b & i+3 c \\ \frac{1}{2} d & \frac{1}{2} e & \frac{1}{2} f\end{array}\right|$
10. Suppose A, B and C are $n \times n$ matrices and $A B C=I$. Find B^{-1}.
11. If A is a 9×9 matrix such that $A^{T}=-A$, then prove that $\operatorname{det}(A)=0$. Is the same result true for a 10×10 matrix A ? Why or why not?
12. Given $A=\left[\begin{array}{rrrr}1 & 0 & 2 & -1 \\ 5 & 2 & -7 & 3 \\ 3 & 0 & 6 & 2 \\ 5 & 2 & -4 & 2\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
(a) Solve only for x_{3}, using Cramer's Rule.
(b) How many solutions does $A \mathbf{x}=0$ have?
13. Are the following true or false. (All matrices are $n \times n$.) Justify your answer. No credit will be given without justification.
(a) $\left|E_{1} E_{2}\right| \neq 0$, where E_{1} and E_{2} are elementary matrices.
(b) $(A+B)(A-B)=A^{2}-B^{2}$
(c) $|A+I|=|A|+1$
(d) If S and T are linear transformations from \mathbb{R}^{n} to \mathbb{R}^{n} such that S is onto but T is NOT onto, then the composition of the transformations $S \circ T$ is NOT onto.
(e) The nonpivot columns of a matrix form a linearly dependent set.
14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation which scales every vector by the scalar 5 then reflects the vector through the y-axis and finally rotates the vector by $\pi / 4$ radians clockwise. Which of the following matrices is the standard matrix for T ? Circle your answer. No justification is required for this question.
a) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$
b) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}-1 & -1 \\ -1 & 1\end{array}\right]$
c) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ -1 & -1\end{array}\right]$
d) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
e) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
f) $\frac{5}{\sqrt{2}}\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

(Marks)

15. Let A be a 7×9 matrix with $\operatorname{rank}(A)=4$.
(a) What is $\operatorname{dim}(\operatorname{Nul}(A))$?
(b) What is $\operatorname{dim}(\operatorname{Row}(A))$?
(c) What is $\left.\operatorname{rank}\left(A^{T}\right)\right)$?
(d) What is $\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)$?
16. Given $A=\left[\begin{array}{rrrrr}1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3\end{array}\right] \sim R=\left[\begin{array}{llllr}1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for column space of A and state its dimension.
(b) Write every column of A not in this basis as a linear combination of the basis vectors.
(c) Find a basis for null space of A and state its dimension.
(d) Find a basis for row space of A.
(e) Do the columns of A span \mathbb{R}^{4} ?
17. Find a basis for each of the following vector spaces S. State the dimension of the vector space in each case.
(a) $S=\left\{\right.$ all 2×2 matrices A such that $\left.A^{T}=A\right\}$.
(b) $S=\left\{\right.$ all vectors in \mathbb{R}^{3} orthogonal to $\left.\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right]\right\}$.
(c) $S=\left\{\right.$ all polynomials $p(x)$ in \mathbb{P}_{3} such that $\left.p(0)=0\right\}$.
18. Given the subset $S=\left\{\right.$ all $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} such that $x \leq 0$ and $\left.y \leq 0\right\}$ of \mathbb{R}^{2}, answer the following:
(a) Does S contain the zero vector?
(b) Is S closed under scalar multiplication?
(c) Is S closed under vector addition?
(d) Is S a subspace of \mathbb{R}^{2} ?
19. For each of the following sets S, determine if it is a subspace of the given vector space. Justify your answer.
(a) $S=\{$ all 3×3 matrices A such that $|A|=0\}$ in $M_{3 \times 3}$.
(b) $S=\left\{\right.$ all 2×3 matrices X such that $\left.\left[\begin{array}{cc}1 & 2 \\ 8 & 16\end{array}\right] X=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right\}$ in $M_{2 \times 3}$.
20. Let \mathcal{P} be the plane defined by the equation $x-2 y+2 z=0$.
(a) Find a basis for the intersection of \mathcal{P} and the $x y$ plane.
(b) Find the intersection of \mathcal{P} with the line $\mathbf{x}=\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(c) Find the distance from the point $\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]$ to \mathcal{P}.
(d) Give a parametric vector equation for the line through the origin which intersects \mathcal{P} at a right angle.
21. Consider the three points $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$.
(a) Find the area of the triangle containing A, B, and C.
(b) Find the equation of a plane containing A, B, and C.
(c) Find the distance from the point A to the line through points B and C.
22. In \mathbb{R}^{3}, find $\mathbf{i} \times(\mathbf{i} \times \mathbf{j})+\mathbf{i} \times(\mathbf{j} \times \mathbf{k})+\mathbf{j} \times(\mathbf{i} \times \mathbf{i})$.
23. Write $A=\left[\begin{array}{ll}4 & 3 \\ 1 & 0\end{array}\right]$ as the product of elementary matrices.
24. Let $T: V \rightarrow W$ be a linear transformation from the vector space V to the vector space W. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a linearly dependent set in V.
Prove that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is a linearly dependent set in W.
25. Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a set of linearly independent vectors in a vector space V.

Prove that the set $\mathcal{C}=\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{1}+v_{3}\right\}$ is also linearly independent.

