1. Consider the matrix $A=\left[\begin{array}{ccccccc}1 & 2 & 1 & 2 & -1 & 5 & 11 \\ 5 & 10 & 5 & 10 & -5 & 25 & 55 \\ -2 & -4 & -1 & -1 & -1 & 0 & 2 \\ 1 & 2 & 3 & 8 & -9 & 31 & 75 \\ 3 & 6 & 1 & 0 & 2 & 0 & -5\end{array}\right]$, which row reduces to

$$
B=\left[\begin{array}{ccccccc}
1 & 2 & 0 & -1 & 0 & 0 & 2 \\
0 & 0 & 1 & 3 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & -5 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the rank of A.
(b) Find a basis for $\operatorname{Col}(A)$. What is its dimension?
(c) Write the 6 th and 7 th column of A as a linear combination of the vectors obtained in (b).
(d) Find a basis for $\operatorname{Nul}(A)$. What is its dimension?
(e) Find a basis for $\operatorname{Row}(A)$.
(f) Write the first row of A as a linear combination of the vectors obtained in (e).
(g) What is the dimension of $\operatorname{Nul}\left(A^{T}\right)$?

Answers:
1.
(a) $\operatorname{rank} A=4$
(b) A basis for $\operatorname{Col}(A)$ is
$\{(1,5,-2,1,3),(1,5,-1,3,1),(-1,-5,-1,-9,2),(5,25,0,31,0)\} . \quad \operatorname{dim}(\operatorname{Col}(A))=4$.
(c) $(5,25,0,31,0)=0(1,5,-2,1,3)+0(1,5,-1,3,1)+0(-1,-5,-1,-9,2)+1(5,25,0,31,0)\}$.
$(11,55,2,75,-5)=2(1,5,-2,1,3)+(-1)(1,5,-1,3,1)+(-5)(-1,-5,-1,-9,2)+(1)(5,25,0,31,0)$.
(d) $\{(-2,1,0,0,0,0,0),(1,0,-3,1,0,0,0),(-2,0,1,0,5,-1,1)\}$
$\operatorname{dim}(\operatorname{Nul}(A))=3$.
(e) $\{(1,2,0,-1,0,0,2),(0,0,1,3,0,0,-1),(0,0,0,0,1,0,-5),(0,0,0,0,0,1,1)\}$
(f) $(1,2,1,2,-1,5,11)=1(1,2,0,-1,0,0,2)+1(0,0,1,3,0,0,-1)+(-1)(0,0,0,0,1,0,-5)+5(0,0,0,0,0,1,1)$
$(\mathrm{g}) \operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)=1$.
2. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}3 \\ 9 \\ 7 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{c}1 \\ k \\ -3 \\ 2 k\end{array}\right]$.
(a) Find a condition on x_{1}, x_{2}, x_{3} and x_{4} that is necessary and sufficient for the vector \mathbf{v} to be in the subspace $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$.
(b) Are the following sets of vectors linearly dependent or independent?
i. $\left\{\mathbf{u}_{1}, \mathbf{u}_{3}\right\}$
ii. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}\right\}$
iii. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$
(c) For what values of k is \mathbf{w} in the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$?
(d) Give a basis for $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ such that none of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ is included in your basis.

Answers:
2.
(a) $3 x_{1}+x_{2}-6 x_{3}+8 x_{4}=0$
(b)
(i) LI
(ii) LI
(iii) LD
(c) $k=-21 / 17$.
(d) $\left\{-\mathbf{u}_{1},-\mathbf{u}_{2},-\mathbf{u}_{3}\right\}$
[10]
3. Let $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 1 \\ 0 & 1\end{array}\right]$ and define the linear transformations
$T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T_{1}(\mathbf{x})=A \mathbf{x}$, and
$T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T_{2}(\mathbf{x})=A^{T} \mathbf{x}$.
Also, let \mathcal{S} denote the unit square in \mathbb{R}^{2}, that is

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]: 0 \leq x_{1} \leq 1 \text { and } 0 \leq x_{2} \leq 1\right\}
$$

and let \mathcal{L} be the line in \mathbb{R}^{3} defined by

$$
\mathbf{x}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]
$$

(a) What is $T_{1}\left(\left[\begin{array}{r}-1 \\ 3\end{array}\right]\right)$? What is $T_{2}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)$?
(b) Find $\left(T_{2} \circ T_{1}\right)(\mathcal{S})$. Draw pictures of \mathcal{S} and $\left(T_{2} \circ T_{1}\right)(\mathcal{S})$.
$\left(\left(T_{2} \circ T_{1}\right)(\mathcal{S})\right.$ denotes the set of images of the vectors in the unit square \mathcal{S}, under the linear transformation $T_{2} \circ T_{1}$.)
(c) Find $\left(T_{1} \circ T_{2}\right)(\mathcal{L})$.
(d) Fill in the following table with YES or NO as appropriate.

	onto	one-to-one
T_{1}		
T_{2}		
$T_{1} \circ T_{2}$		
$T_{2} \circ T_{1}$		

Answers:
3.
(a) $T_{1}\left(\left[\begin{array}{r}-1 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$
$T_{2}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 3\end{array}\right] 3 .(\mathrm{b})$
$\mathcal{S}=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: 0 \leq x_{1} \leq 1\right.$ and $\left.0 \leq x_{2} \leq 1\right\}$

$\left(T_{2} \circ T_{1}\right)(\mathcal{S})=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: 0 \leq x_{1} \leq 2\right.$ and $\left.0 \leq x_{2} \leq 3\right\}$

(c) $\left(T_{1} \circ T_{2}\right)(\mathcal{L})=\{(6,2,4)\}$.
(d)

	onto	one-to-one
T_{1}	no	yes
T_{2}	yes	no
$T_{1} \circ T_{2}$	no	no
$T_{2} \circ T_{1}$	yes	yes

[10] 4. Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & 7 \\
1 & 0 & -4
\end{array}\right], B=\left[\begin{array}{rc}
6 & 0 \\
-2 & 8 \\
1 & -1
\end{array}\right] \text { and } C=\left[\begin{array}{rc}
5 & 1 \\
-3 & 3
\end{array}\right]
$$

(a) i. Evaluate $A B+3 C$.
ii. If possible, find a matrix X such that $3 C X=I-A B X$.
(You should try to solve for X using matrix algebra.)
iii. What is the rank of the 5×5 matrix

$$
\left[\begin{array}{cc}
0 & B \\
A & 0
\end{array}\right] ?
$$

(b) Let Y be an $n \times 2$ matrix. Fill in the blanks with must, might or cannot to make each of the following statements true.
i. If Y has two pivot positions then $Y C$ \qquad be invertible and $C Y^{T}$ \qquad be invertible.
ii. If Y has one pivot position then $Y C$ \qquad have linearly independent columns, and $C Y^{T}$ have linearly independent columns.

Answers:
4.
(a)
(i)

$$
A B+3 C=\left[\begin{array}{rr}
24 & 12 \\
-7 & 13
\end{array}\right]
$$

(ii)

$$
X=\left[\begin{array}{cc}
13 / 396 & -1 / 33 \\
-7 / 396 & 2 / 33
\end{array}\right]
$$

(iii) 4
(b)
(i) If Y has two pivot positions then $Y C$ might be invertible and $C Y^{T}$ might be invertible.
(ii)If Y has one pivot position then $Y C$ cannot have linearly independent columns, and $C Y^{T}$ might have linearly independent columns.
5. Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & -2 & 0 & -3 \\ 1 & -2 & 3 & 4\end{array}\right]$
(a) Find the following determinants:
i. $\operatorname{det}(A)$
ii. $\operatorname{det}(-3 A)$
iii. $\operatorname{det}\left(A^{-2}\right)$
iv. $\operatorname{det}\left(P A P^{-1}\right)$ where P is a 4×4 invertible matrix.
v. $\operatorname{det}(B A B)$ where B is a singular (i.e. non-invertible) matrix.
vi. $\operatorname{det}(D)$ where D is the reduced row echelon form of the matrix A.
(b) Use the determinant of A^{-1} to find $\operatorname{adj}\left(A^{-1}\right)$.
[4] 6. Find all values of s for which the following system is inconsistent.
For full marks show the work that justifies your answer.

$$
\begin{aligned}
& 3 s x_{1}+2 x_{2}=4 \\
& 6 x_{1}+s x_{2}=-4
\end{aligned}
$$

Answers:
5.
(a)
(i) -57
(ii) -4617
(iii) $1 / 3249$
(iv) -57
(v) 0
(vi) 1
(b) $(-1 / 57)\left[\begin{array}{cccc}1 & 2 & 0 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & -2 & 0 & -3 \\ 1 & -2 & 3 & 4\end{array}\right]$
6. The augmented matrix of this system row reduces to $\left[\begin{array}{ccc}6 & s & -4 \\ 0 & 2-(1 / 2) s^{2} & 4+4 s\end{array}\right]$.

The system will be inconsistent if and only if there is a pivot position in the last column. Since the $(1,1)$ position is a pivot position, the system is inconsistent if and only if the $(3,2)$ position is a pivot position. Thus inconsistency of the system is equivalent to $2-(1 / 2) s^{2}=0$ and $s \neq-2$. Therefore the system is inconsistent if $s=2$ and consistent if $s \neq 2$.
[10] 7. An $n \times n$ matrix B is called idempotent if $B^{2}=B$.
(a) Suppose that B is an $n \times n$ idempotent matrix
i. Show that $\operatorname{det} B=0$ or $\operatorname{det} B=1$.
ii. Show that if $\operatorname{det} B=1$ then $B=I$. (I is the $n \times n$ identity matrix.)
iii. Show that $I-B$ is also idempotent.
(b) For what values of a and b is $\left[\begin{array}{ll}2 & 3 \\ a & b\end{array}\right]$ idempotent?
(c) Let A be any $n \times n$ matrix. Show that

$$
\left[\begin{array}{cc}
A & \frac{1}{k} A \\
k(I-A) & I-A
\end{array}\right]
$$

is idempotent, where k is any non-zero scalar.
7.Answers
(a) Let $x=\operatorname{det} B$.
(i) $x^{2}=(\operatorname{det} B)^{2}=\operatorname{det}\left(B^{2}\right)=\operatorname{det} B=x$. therefore $x^{2}-x=0$ i.e. $x(x-1)=0$ and so $x=0$ or $x=1$.
(ii) Since det $B \neq 0, B^{-1}$ exists and so
$B=I B=\left(B^{-1} B\right) B=B^{-1}(B B)=B^{-1} B=I$.
(iii) $(I-B)^{2}=(I-B)(I-B)=I-B-B+B^{2}=I-B-B+B=I-B$.
(b) $a=-2 / 3$ and $b=-1$.
(c)
$\left[\begin{array}{cc}A & \frac{1}{k} A \\ k(I-A) & I-A\end{array}\right]\left[\begin{array}{cc}A & \frac{1}{k} A \\ k(I-A) & I-A\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
A A+\left(\frac{1}{k} A\right)(k(I-A)) & A\left(\frac{1}{k} A\right)+\left(\frac{1}{k} A\right)(I-A) \\
k(I-A) A+(I-A) k(I-A) & k(I-A)\left(\frac{1}{k} A\right)+(I-A)(I-A)
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{2}+A-A^{2} & \frac{1}{k}\left(A^{2}+A-A^{2}\right) \\
k\left(A-A^{2}+I-2 A+A^{2}\right) & A-A^{2}+I-2 A+A^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A & \frac{1}{k} A \\
k(I-A) & I-A
\end{array}\right]
\end{aligned}
$$

[6] 8 . Let V be the subspace of the space of all 2×2 matrices defined by
(a) Is O (the 2×2 zero matrix) in V ?
(b) Is I_{2} (the 2×2 identity matrix) in V ?
(c) For what a is $\left[\begin{array}{ll}2 & 2 \\ 3 & a\end{array}\right]$ in V ?
(d) Find a basis for V.
(e) Write the matrix you found in part (c) as a linear combination of the basis matrices you found in part (d).
[4] 9. Which of the following sets are subspaces of P_{2}, the space of polynomials of degree at most 2 . If a set is a subspace, give a basis of the subspace. If a set is not a subspace, explain why it is not a subspace.(No marks unless you give an adequate explanation of why a set is not a subspace.)
(a) $\left\{p(x): p^{\prime}(1)=0\right\}$
(b) $\left\{p(x): \int_{0}^{1} p(x) d x=1\right\}$

Answers:
8.
(a) Yes
(b) No
(c) $a=-3$
(d)

$$
\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

(e)

$$
\left[\begin{array}{cc}
2 & 2 \\
3 & -3
\end{array}\right]=2\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+3\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right] .
$$

9.

(a) $\left\{x^{2}-2 x, 1\right\}$
(b) The zero polynomial is not in the set and so it is not a subspace.
[10] 10. Given the points $P(0,0,1), Q(1,1,2), R(4,6,5)$ and $S(6,11,10)$, find the following:
(a) a normal to the plane containing the points P, Q and R.
(b) the standard equation of the plane containing the points P, Q and R. (The standard equation has the form $a x+b y+c z=d$.)
(c) the standard equation of the plane through the origin parallel to the plane found in part (b).
(d) the area of triangle $P Q R$
(e) the volume of the parallelepiped three of whose sides are $P Q, P R$ and $P S$.
(f) the distance between the point S and the plane found in part (b).

Answers:
10.
(a) $(1,0,-1)$
(b) $x-z=-1$
(c) $x-z=0$
(d) $\sqrt{2}$
(e) 6
(f) $(3 / 2) \sqrt{2}$
11. The identity
$\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
is true for any vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in R^{3}.
(a) Fill in the blanks with must, might or cannot to make each of the following statements true.
i. The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \ldots$ lie in the span of the vectors $3 \mathbf{v}$ and $5 \mathbf{w}$
ii. The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \ldots$ be orthogonal to the vector $2 \mathbf{v} \times(-4 \mathbf{w})$
iii. The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ \qquad be a solution of $\mathbf{v} \cdot \mathbf{x}=0$ and $\mathbf{w} \cdot \mathbf{x}=0$.
iv. The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ \qquad be parallel to the vector \mathbf{u}.
(b) Give a specific numeric example of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=\mathbf{v}$.
(c) Use the identity to simplify $(\mathbf{u} \times \mathbf{w}) \times(\mathbf{v} \times \mathbf{w})$.
(d) Apply the identity to write $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ as a linear combination of \mathbf{u} and \mathbf{v}.

Answers:
11.
(a)(i) The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ must lie in the span of the vectors $3 \mathbf{v}$ and $5 \mathbf{w}$
(ii) The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ must be orthogonal to the vector $2 \mathbf{v} \times(-4 \mathbf{w})$
(iii) The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ might be a solution of $\mathbf{v} \cdot \mathbf{x}=0$ and $\mathbf{w} \cdot \mathbf{x}=0$.
(iv) The vector $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ cannot be parallel to the vector \mathbf{u}.
(b) $\mathbf{u}=(0,0,0), \mathbf{v}=(1,0,0), \mathbf{w}=(0,1,0)$
(c) $(\mathbf{u} \times \mathbf{w}) \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})) \mathbf{w}$
(d) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(-(\mathbf{w} \cdot \mathbf{v})) \mathbf{u}+(\mathbf{w} \cdot \mathbf{u}) \mathbf{v}$
13. Find the point of intersection of the line

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
9 \\
-1 \\
3
\end{array}\right]+t\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right], t \in \mathbb{R}
$$

with the plane containing both the y-axis and the z-axis.
Answers:
12.
(a)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
25 / 14 \\
-1 / 7 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
9 \\
7
\end{array}\right], t \in \mathbb{R}
$$

(b) $\mathbf{n}_{\mathbf{1}}=(4,1,-3)$ and $\mathbf{n}_{\mathbf{2}}=(2,-3,3)$
$\cos \left(\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}\right)=-\frac{2}{\sqrt{143}}$
13. $(0,-14 / 5,6 / 5)$.

