[10] 1. Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & -1 & 5 & 11 \\ 5 & 10 & 5 & 10 & -5 & 25 & 55 \\ -2 & -4 & -1 & -1 & -1 & 0 & 2 \\ 1 & 2 & 3 & 8 & -9 & 31 & 75 \\ 3 & 6 & 1 & 0 & 2 & 0 & -5 \end{bmatrix}$$
, which row reduces to

$$B = \left[\begin{array}{ccccccc} 1 & 2 & 0 & -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

- (a) Find the rank of A.
- (b) Find a basis for Col(A). What is its dimension?
- (c) Write the 6th and 7th column of A as a linear combination of the vectors obtained in (b).
- (d) Find a basis for Nul(A). What is its dimension?
- (e) Find a basis for Row(A).
- (f) Write the first row of A as a linear combination of the vectors obtained in (e).
- (g) What is the dimension of $Nul(A^T)$?

1.

[10]

- (a) rankA = 4
- (b) A basis for Col(A) is

$$\{(1,5,-2,1,3),(1,5,-1,3,1),(-1,-5,-1,-9,2),(5,25,0,31,0)\}.$$
 $dim(Col(A))=4.$

$$(c)(5,25,0,31,0) = 0(1,5,-2,1,3) + 0(1,5,-1,3,1) + 0(-1,-5,-1,-9,2) + 1(5,25,0,31,0)$$

$$(11,55,2,75,-5) = 2(1,5,-2,1,3) + (-1)(1,5,-1,3,1) + (-5)(-1,-5,-1,-9,2) + (1)(5,25,0,31,0).$$

$$(d)\{(-2,1,0,0,0,0,0),(1,0,-3,1,0,0,0),(-2,0,1,0,5,-1,1)\}$$

$$dim(Nul(A)) = 3.$$

$$(e)\{(1,2,0,-1,0,0,2),(0,0,1,3,0,0,-1),(0,0,0,0,1,0,-5),(0,0,0,0,0,1,1)\}$$

$$(f)(1,2,1,2,-1,5,11) = 1(1,2,0,-1,0,0,2) + 1(0,0,1,3,0,0,-1) + (-1)(0,0,0,0,1,0,-5) + 5(0,0,0,0,0,1,1)$$

$$(g)dim(Nul(A^T)) = 1.$$

2. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 3 \\ 9 \\ 7 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ k \\ -3 \\ 2k \end{bmatrix}$.

- (a) Find a condition on x_1, x_2, x_3 and x_4 that is necessary and sufficient for the vector \mathbf{v} to be in the subspace Span{ $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ }.
- (b) Are the following sets of vectors linearly dependent or independent?

i.
$$\{{\bf u}_1,{\bf u}_3\}$$

ii.
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_4\}$$

iii.
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$$

- (c) For what values of k is \mathbf{w} in the span of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$?
- (d) Give a basis for $\operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ such that none of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ is included in your basis.

(a)
$$3x_1 + x_2 - 6x_3 + 8x_4 = 0$$

- (b)
- (i) LI
- (ii) LI
- (iii) LD
- (c) k = -21/17.
- (d) $\{-\mathbf{u}_1, -\mathbf{u}_2, -\mathbf{u}_3\}$

[10] 3. Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and define the linear transformations

$$T_1: \mathbb{R}^2 \to \mathbb{R}^3 \text{ by } T_1(\mathbf{x}) = A\mathbf{x}, \text{ and }$$

$$T_2: \mathbb{R}^3 \to \mathbb{R}^2 \text{ by } T_2(\mathbf{x}) = A^T \mathbf{x}$$
.

Also, let S denote the unit square in \mathbb{R}^2 , that is

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 0 \le x_1 \le 1 \text{ and } 0 \le x_2 \le 1 \right\},$$

and let \mathcal{L} be the line in \mathbb{R}^3 defined by

$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}.$$

(a) What is
$$T_1\left(\begin{bmatrix} -1\\3 \end{bmatrix}\right)$$
? What is $T_2\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right)$?

- (b) Find $(T_2 \circ T_1)(\mathcal{S})$. Draw pictures of \mathcal{S} and $(T_2 \circ T_1)(\mathcal{S})$. $((T_2 \circ T_1)(\mathcal{S})$ denotes the set of images of the vectors in the unit square \mathcal{S} , under the linear transformation $T_2 \circ T_1$.)
- (c) Find $(T_1 \circ T_2)(\mathcal{L})$.
- (d) Fill in the following table with YES or NO as appropriate.

	onto	one-to-one
T_1		
T_2		
$T_1 \circ T_2$		
$T_2 \circ T_1$		

3

(a)
$$T_1\left(\begin{bmatrix} -1\\ 3 \end{bmatrix}\right) = \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix}$$

$$T_2\left(\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 0\\ 3 \end{bmatrix} 3. \text{ (b)}$$

$$\mathcal{S} = \left\{ \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] : 0 \le x_1 \le 1 \text{ and } 0 \le x_2 \le 1 \right\}$$

$$(T_2 \circ T_1)(\mathcal{S}) = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 0 \le x_1 \le 2 \text{ and } 0 \le x_2 \le 3 \right\}$$

(c)
$$(T_1 \circ T_2)(\mathcal{L}) = \{(6, 2, 4)\}.$$

	onto	one-to-one
T_1	no	yes
T_2	yes	no
$T_1 \circ T_2$	no	no
$T_2 \circ T_1$	yes	yes

4. Let [10]

$$A = \begin{bmatrix} 1 & 2 & 7 \\ 1 & 0 & -4 \end{bmatrix}, B = \begin{bmatrix} 6 & 0 \\ -2 & 8 \\ 1 & -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 5 & 1 \\ -3 & 3 \end{bmatrix}$$

- i. Evaluate AB + 3C.
 - ii. If possible, find a matrix X such that 3CX = I ABX. (You should try to solve for X using matrix algebra.)
 - iii. What is the rank of the 5×5 matrix

$$\begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}?$$

- (b) Let Y be an $n \times 2$ matrix. Fill in the blanks with must, might or cannot to make each of the following statements true.

 - i. If Y has two pivot positions then YC ______ be invertible and CY^T _____ be invertible. ii. If Y has one pivot position then YC ______ have linearly independent columns, and CY^T have linearly independent columns.

Answers:

- 4.
- (a)
- (i)

$$AB + 3C = \left[\begin{array}{cc} 24 & 12 \\ -7 & 13 \end{array} \right]$$

(ii)

$$X = \begin{bmatrix} 13/396 & -1/33 \\ -7/396 & 2/33 \end{bmatrix}$$

(iii) 4

(b)

(i) If Y has two pivot positions then YC might be invertible and CY^T might be invertible.

(ii) If Y has one pivot position then YC cannot have linearly independent columns, and CY^T might have linearly independent columns.

[6] 5. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & -2 & 0 & -3 \\ 1 & -2 & 3 & 4 \end{bmatrix}$$

(a) Find the following determinants:

i. det(A)

ii. $\det(-3A)$

iii. $\det(A^{-2})$

iv. $\det(PAP^{-1})$ where P is a 4×4 invertible matrix.

v. det(BAB) where B is a singular (i.e. non-invertible) matrix.

vi. det(D) where D is the reduced row echelon form of the matrix A.

(b) Use the determinant of A^{-1} to find adj (A^{-1}) .

[4] 6. Find all values of s for which the following system is inconsistent. For full marks show the work that justifies your answer.

$$3sx_1 + 2x_2 = 4$$

$$6x_1 + sx_2 = -4$$

Answers:

5.

(a)

(i) -57

(ii) -4617

(iii) 1/3249

(iv) -57

(v) 0

(vi) 1

(b)
$$(-1/57)$$

$$\begin{bmatrix} 1 & 2 & 0 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & -2 & 0 & -3 \\ 1 & -2 & 3 & 4 \end{bmatrix}$$

6. The augmented matrix of this system row reduces to $\begin{bmatrix} 6 & s & -4 \\ 0 & 2 - (1/2)s^2 & 4 + 4s \end{bmatrix}$.

The system will be inconsistent if and only if there is a pivot position in the last column. Since the (1,1) position is a pivot position, the system is inconsistent if and only if the (3,2) position is a pivot position. Thus inconsistency of the system is equivalent to $2 - (1/2)s^2 = 0$ and $s \neq -2$. Therefore the system is inconsistent if s = 2 and consistent if $s \neq 2$.

- [10] 7. An $n \times n$ matrix B is called idempotent if $B^2 = B$.
 - (a) Suppose that B is an $n \times n$ idempotent matrix
 - i. Show that $\det B = 0$ or $\det B = 1$.
 - ii. Show that if $\det B = 1$ then B = I. (I is the $n \times n$ identity matrix.)
 - iii. Show that I B is also idempotent.
 - (b) For what values of a and b is $\begin{bmatrix} 2 & 3 \\ a & b \end{bmatrix}$ idempotent?
 - (c) Let A be any $n \times n$ matrix. Show that

$$\left[\begin{array}{cc} A & \frac{1}{k}A \\ k(I-A) & I-A \end{array}\right]$$

is idempotent, where k is any non-zero scalar.

7. Answers

- (a) Let $x = \det B$.
- (i) $x^2 = (\det B)^2 = \det (B^2) = \det B = x$. therefore $x^2 x = 0$ i.e. x(x 1) = 0 and so x = 0 or x = 1.
- (ii) Since $\det B \neq 0$, B^{-1} exists and so

$$B = IB = (B^{-1}B)B = B^{-1}(BB) = B^{-1}B = I.$$

(iii)
$$(I - B)^2 = (I - B)(I - B) = I - B - B + B^2 = I - B - B + B = I - B$$
.

(b)
$$a = -2/3$$
 and $b = -1$.

(c)

$$\begin{bmatrix} A & \frac{1}{k}A \\ k(I-A) & I-A \end{bmatrix} \begin{bmatrix} A & \frac{1}{k}A \\ k(I-A) & I-A \end{bmatrix}$$

$$= \begin{bmatrix} AA + (\frac{1}{k}A)(k(I-A)) & A(\frac{1}{k}A) + (\frac{1}{k}A)(I-A) \\ k(I-A)A + (I-A)k(I-A) & k(I-A)(\frac{1}{k}A) + (I-A)(I-A) \end{bmatrix}$$

$$= \begin{bmatrix} A^2 + A - A^2 & \frac{1}{k}(A^2 + A - A^2) \\ k(A-A^2 + I - 2A + A^2) & A - A^2 + I - 2A + A^2 \end{bmatrix}$$

$$= \begin{bmatrix} A & \frac{1}{k}A \\ k(I-A) & I-A \end{bmatrix}$$

- [6] 8. Let V be the subspace of the space of all 2×2 matrices defined by
 - (a) Is O (the 2×2 zero matrix) in V?
 - (b) Is I_2 (the 2×2 identity matrix) in V?
 - (c) For what a is $\begin{bmatrix} 2 & 2 \\ 3 & a \end{bmatrix}$ in V?
 - (d) Find a basis for V.
 - (e) Write the matrix you found in part (c) as a linear combination of the basis matrices you found in part (d).
- [4] 9. Which of the following sets are subspaces of P_2 , the space of polynomials of degree at most 2. If a set is a subspace, give a basis of the subspace. If a set is not a subspace, explain why it is not a subspace. (No marks unless you give an adequate explanation of why a set is not a subspace.)
 - (a) $\{p(x): p'(1) = 0\}$
 - (b) $\{p(x): \int_0^1 p(x)dx = 1\}$

8.

- (a) Yes
- (b) No
- (c) a = -3

(d)

$$\left\{ \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & -1 \end{array}\right] \right\}.$$

(e)

$$\left[\begin{array}{cc} 2 & 2 \\ 3 & -3 \end{array}\right] = 2 \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right] + 3 \left[\begin{array}{cc} 0 & 0 \\ 1 & -1 \end{array}\right].$$

9.

(a)
$$\{x^2 - 2x, 1\}$$

- (b) The zero polynomial is not in the set and so it is not a subspace.
- [10] 10. Given the points P(0,0,1), Q(1,1,2), R(4,6,5) and S(6,11,10), find the following:
 - (a) a normal to the plane containing the points P, Q and R.
 - (b) the standard equation of the plane containing the points P, Q and R. (The standard equation has the form ax + by + cz = d.)
 - (c) the standard equation of the plane through the origin parallel to the plane found in part (b).
 - (d) the area of triangle PQR
 - (e) the volume of the parallelepiped three of whose sides are PQ, PR and PS.
 - (f) the distance between the point S and the plane found in part (b).

Answers:

10.

(a)
$$(1,0,-1)$$

(b)
$$x - z = -1$$

(c)
$$x - z = 0$$

$$(d) \sqrt{2}$$

(f)
$$(3/2)\sqrt{2}$$

[10] 11. The identity

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

is true for any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^3 .

- (a) Fill in the blanks with must, might or cannot to make each of the following statements true.
 - i. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ _____ lie in the span of the vectors $3\mathbf{v}$ and $5\mathbf{w}$
 - ii. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be orthogonal to the vector $2\mathbf{v} \times (-4\mathbf{w})$
 - iii. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be a solution of $\mathbf{v} \cdot \mathbf{x} = 0$ and $\mathbf{w} \cdot \mathbf{x} = 0$.
 - iv. The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ be parallel to the vector \mathbf{u} .
- (b) Give a specific numeric example of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ such that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \mathbf{v}$.
- (c) Use the identity to simplify $(\mathbf{u} \times \mathbf{w}) \times (\mathbf{v} \times \mathbf{w})$.

(d) Apply the identity to write $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ as a linear combination of \mathbf{u} and \mathbf{v} .

Answers:

11.

- (a)(i) The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ must lie in the span of the vectors $3\mathbf{v}$ and $5\mathbf{w}$
- (ii) The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ must be orthogonal to the vector $2\mathbf{v} \times (-4\mathbf{w})$
- (iii) The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ might be a solution of $\mathbf{v} \cdot \mathbf{x} = 0$ and $\mathbf{w} \cdot \mathbf{x} = 0$.
- (iv) The vector $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ cannot be parallel to the vector \mathbf{u} .
- (b) $\mathbf{u} = (0, 0, 0), \mathbf{v} = (1, 0, 0), \mathbf{w} = (0, 1, 0)$
- $(c)(\mathbf{u} \times \mathbf{w}) \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}))\mathbf{w}$
- (d) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (-(\mathbf{w} \cdot \mathbf{v}))\mathbf{u} + (\mathbf{w} \cdot \mathbf{u})\mathbf{v}$
- [7] 12. Consider the planes 4x + y 3z = 7 and 2x 3y + 3z = 4.
 - (a) Find their line of intersection.
 - (b) For each of the above two planes, find a normal, and the find the angle between these two normals (in radians, 2 decimal places).
- [3] 13. Find the point of intersection of the line

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}, \ t \in \mathbb{R}$$

with the plane containing both the y-axis and the z-axis.

Answers:

12.

(a)

$$\left[\begin{array}{c} x\\y\\z\end{array}\right] = \left[\begin{array}{c} 25/14\\-1/7\\0\end{array}\right] + t \left[\begin{array}{c} 3\\9\\7\end{array}\right], \ t \in \mathbb{R}$$

(b)
$$\mathbf{n_1}=(4,1,-3)$$
 and $\mathbf{n_2}=(2,-3,3)$ $\cos(\mathbf{n_1},\mathbf{n_2})=-\frac{2}{\sqrt{143}}$ $13.(0,-14/5,6/5).$