From the files of Norman Dobson (edited by T. Gideon)

Calculus II – Final Exam Problems Sequences, Geometric and Telescoping Series

- 1. Given the sequence $\left\{\frac{1+\ln n}{n^3}\right\}_{n=1}^{\infty}$
 - (a) Is it monotonic? Is it bounded?
 - (b) What can be concluded from (a)?
- 2. Illustrate each of the following with an exam-
 - (a) A bounded sequence need not converge.
 - (b) A monotonic sequence need not be bounded.
- 3. If possible, state an example for each of the following
 - (a) A convergent sequence which is not mono-
 - (b) A convergent sequence which is not bounded.
- 4. Determine whether each sequence is convergent or divergent? If convergent find what it converges to. If divergent, state when it diverges to ∞ or $-\infty$.
 - (a) $\left\{\frac{\sqrt{n+1}}{n}\right\}_{n=1}^{\infty}$
 - (b) $\left\{\frac{n^2}{n!}\right\}_{n=0}^{\infty}$
 - (c) $\left\{\frac{n!2^n}{(2n)!}\right\}_{n=0}^{\infty}$
 - (d) $a_n = -2 + \ln \left[\frac{2+n}{3n} \right], \quad n = 1, 2, 3, \dots$
 - (e) $a_n = (5n)^{3/\ln n}$, n = 2, 3, 4, ...
 - $(f) \left\{ \frac{2n+1}{3n-1} \right\}_{n=1}^{\infty}$
 - (g) $a_n = \ln(2n+1) \ln n$, n = 1, 2, 3, ...

 - (h) $\left\{\frac{n}{e^n}\right\}_{n=1}^{\infty}$ (i) $\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty}$
 - (j) $\{1-(-1)^n\}_{n=1}^{\infty}$
 - $(\mathbf{k}) \ \left\{ \frac{\ln(n+1)}{(n+1)^2} \right\}_{n=1}^{\infty}$
 - (l) $\{e^{-n}\sin n\}_{n}^{\infty}$
 - (m) $\left\{\frac{n^3 + 2n}{n^2 + 7}\right\}_{n=1}^{\infty}$ (n) $\left\{\frac{n+1}{2^n}\right\}_{n=1}^{\infty}$ (o) $\left\{\frac{3^{n+2}}{(n+1)!}\right\}_{n=1}^{\infty}$

- (p) $a_n = \frac{n}{n^2 + n + 2}$, n = 3, 4, 5, ...
- (q) $\left\{\frac{e^n}{n!}\right\}_{n=1}^{\infty}$
- $(r) \left\{ \frac{\sqrt{n}}{n-3} \right\}_{n=4}^{\infty}$
- (s) $\left\{ \frac{2n^2+1}{5n^2-3} \right\}_{n=1}^{\infty}$
- 5. For each geometric sequence determine its common ratio r, whether it converges or diverges, and find its sum when it converges.
 - (a) $\sum_{n=2}^{\infty} \frac{4}{(-3)^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{3^n}{2^{n+2}}$
 - (c) $\frac{8}{3} + \frac{64}{27} + \frac{512}{243} + \cdots$
 - (d) $1 e + e^2 e^3 + \cdots$
- 6. Determine whether the telescoping sum converges or diverges. Find its sum when it converges.
 - (a) $\sum_{n=2}^{\infty} \frac{1}{(2n+1)(2n+3)}$
 - (b) $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+5)}$
 - (c) $\sum_{n=0}^{\infty} \ln\left(1 + \frac{1}{n}\right)$

Answers:

- 1. (a) Yes. Yes. (b) It converges.
- 2. (a) $\{(-1)^n\}$ is bounded and oscillating.
 - (b) $\{n\}$ is monotonic and unbounded.
- 3. (a) $a_n = \frac{(-1)^n}{n}$
 - (b) Not possible.

Answers:

- 4. (a) Converges to 0.
 - (b) Converges to 0.
 - (c) Converges to 0.
 - (d) Converges to $-2 \ln 3$.
 - (e) Converges to e^3
 - (f) Converges to $\frac{2}{3}$.

- (g) Converges to $\ln 2$.
- (h) Converges to 0.
- (i) Converges to 0.
- (j) Diverges.
- (k) Converges to 0.
- (l) Converges to 0.
- (m) Diverges to ∞ .
- (n) Converges to 0.
- (o) Converges to 0.
- (p) Converges to 0.
- (q) Converges to 0.
- (r) Converges to 0.

- (s) Converges to $\frac{2}{5}$.
- 5. (a) $r = -\frac{1}{3}$. Converges to $\frac{1}{3}$
 - (b) $r = \frac{3}{2}$. Diverges to ∞ .
 - (c) $r = \frac{8}{9}$. Converges to 24.
 - (d) r = -e. Diverges.
- 6. Determine whether the telescoping sum converges or diverges. Find its sum when it diverges.
 - (a) Converges to
 - (b) Converges to
 - (c) Diverges to ∞ .