Math - Calculus II

SERIES (Partial Sums)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots \text { infinite series } \\
& S_{1}=a_{1} ; S_{2}=a_{1}+a_{2} ; S_{3}=a_{1}+a_{2}+a_{3} ; \ldots . \\
& S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n} \\
& \left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}=\text { sequence of partial sums }
\end{aligned}
$$

GEOMETRIC SERIES

$$
\begin{aligned}
& a+a r+a r^{2}+a r^{3}+\ldots \\
& S_{1}=a ; S_{3}=a+a r+a r^{2} ; \ldots \ldots \rightarrow S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(\text { in compressed form }) \\
& S=\text { sum of the series }=\lim _{n \rightarrow \infty} S_{n}=S_{\infty}=\frac{a}{1-r} \text { (assuming this limit exists) }
\end{aligned}
$$

Otherwise, the series diverges (that is, the series has no sum).

Geometric Series

Find S_{n} and determine whether the series converges. If the series converges, find the sum of the series.
(1) $\sum_{k=1}^{\infty} \frac{2}{5^{k-1}} S_{n}=\frac{5}{2}\left[1-\left(\frac{1}{5}\right)^{n}\right]$; convergent to $S_{\infty}=\frac{5}{2}$
(2) $\sum_{\mathrm{k}=1}^{\infty} \frac{2^{\mathrm{k}-1}}{4} \quad \mathrm{~S}_{\mathrm{n}}=-\frac{1}{4}\left[1-(2)^{\mathrm{n}}\right]$; divergent
(3) $\sum_{n=1}^{\infty} 4^{n-1} \quad S_{n}=-\frac{1}{3}\left[1-(4)^{n}\right]$; divergent
(4) $\sum_{n=1}^{\infty}\left(-\frac{3}{2}\right)^{n+1} \quad S_{n}=\frac{9}{10}\left[1-\left(-\frac{3}{2}\right)^{n}\right]$; divergent
(5) $\sum_{n=1}^{\infty} \frac{4^{n+2}}{7^{n+1}} \quad S_{n}=\frac{64}{21}\left[1-\left(\frac{4}{7}\right)^{n}\right]$; convergent to $S_{\infty}=\frac{64}{21}$
(6) $\sum_{k=1}^{\infty}\left(\frac{e}{\pi}\right)^{k-1} \quad S_{n}=\frac{\pi}{\pi-e}\left[1-\left(\frac{e}{\pi}\right)^{n}\right]$; convergent to $S_{\infty}=\frac{\pi}{\pi-e}$
(7) $\sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k} \quad S_{n}=-\frac{1}{3}\left[1-\left(-\frac{1}{2}\right)^{n}\right]$; convergent to $S_{\infty}=-\frac{1}{3}$
(8) $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n+1} \quad S_{n}=\frac{4}{3}\left[1-\left(\frac{2}{3}\right)^{n}\right]$; convergent to $S_{\infty}=\frac{4}{3}$
(9) $\sum_{k=1}^{\infty}\left(-\frac{3}{4}\right)^{k-1} \quad S_{n}=\frac{4}{7}\left[1-\left(-\frac{3}{4}\right)^{n}\right]$; convergent to $S_{\infty}=\frac{4}{7}$
(10) $\sum_{k=1}^{\infty}(-1)^{k-1} \frac{7}{6^{k-1}} \quad S_{n}=6\left[1-\left(-\frac{1}{6}\right)^{n}\right] ;$ convergent to $S_{\infty}=6$

TELESCOPING SERIES

Find S_{n} and if possible, find the sum of the series
(1) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \quad S_{n}=1-\frac{1}{n+1}$; convergent to $S_{\infty}=1$
(2) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)} \quad S_{n}=\frac{1}{2}\left[1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right]$; convergent to $S_{\infty}=\frac{3}{4}$
(3) $\sum_{k=1}^{\infty} \frac{6}{(3 k+2)(3 k-1)} \quad S_{n}=1-\frac{2}{3 n+2}$; convergent to $S_{\infty}=1$
(4) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)} \quad S_{n}=\frac{1}{2}\left[1-\frac{1}{2 n+1}\right]$; convergent to $S_{\infty}=\frac{1}{2}$
(5) $\sum_{n=1}^{\infty}[\sin (n)-\sin (n+1)]$

$$
S_{n}=\sin (1)-\sin (n+1) ; \text { divergent (oscillation), no sum }
$$

(6) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right) \quad S_{n}=\ln (1)-\ln (n+1)=-\ln (n+1)$; divergent, no sum
(7) $\sum_{\mathrm{k}=1}^{\infty}\left(\frac{1}{\mathrm{k}+3}-\frac{1}{\mathrm{k}+4}\right) \quad \mathrm{S}_{\mathrm{n}}=\frac{1}{4}-\frac{1}{\mathrm{n}+4}$; convergent to $\mathrm{S}_{\infty}=\frac{1}{4}$
(8) $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)} \quad S_{n}=\frac{1}{2}-\frac{1}{n+2}$; convergent to $S_{\infty}=\frac{1}{2}$
(9) $\sum_{n=1}^{\infty} \frac{4}{(n+3)(n+5)} \quad S_{n}=\frac{2}{4}+\frac{2}{5}-\frac{2}{n+4}-\frac{2}{n+5}$; convergent to $S_{\infty}=\frac{9}{10}$

Express the repeating decimal as a fraction by writing the decimal as a geometric series.
(1) $0 . \overline{4}$ converges to $\frac{4}{9}$; (2) $0 . \overline{9} \quad$ converges to 1
(3) $5 . \overline{37}$ converges to $\frac{532}{99}$; (4) $0 . \overline{159}$ converges to $\frac{159}{999}$
(5) $0 . \overline{7821}$ converges to $\frac{79}{101}$; (6) $0.451 \overline{14}$ converges to $\frac{44663}{99000}$

