Math - Calculus II

SERIES (2)

11.7 from Stewart (4th edition)

Test the series for convergence or divergence.

(19)
$$\sum_{n=0}^{\infty} \frac{n!}{2.5.8....(3n+2)}$$
 convergent (absolutely) by RatioT: $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3} < 1$

(20)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n+1)(n+2)}$$
 use AST, series converges

(21)
$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{i(i+1)}}$$
 C.T. $\Rightarrow \sum \frac{1}{n}$; series div

(22)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2-1}}{n^3+2n^2+5}$$
 C.T. $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2}$; series conv

(23)
$$\sum_{n=1}^{\infty} (-1)^n 2^{\frac{1}{n}}$$
 nTT: $\lim_{n\to\infty} a_n = \pm 1 \neq 0$; series div

(24)
$$\sum_{n=1}^{\infty} \frac{\cos (n/2)}{n^2 + 4n}$$
 C.T. $\rightarrow \sum \frac{1}{n^2}$; series abs conv

(25)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$
 use AST, series converges

(26)
$$\sum_{n=1}^{\infty} \frac{\tan (1/n)}{n} \quad \text{L.C.T.} \Rightarrow \sum \frac{1}{n^2} \text{; series conv}$$

(27)
$$\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n}$$
 RootT: rewrite: $\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n} = \sum_{n=1}^{\infty} \frac{4^n}{n^n}$ (conv)

(28)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{5^n}$$
; ratio test, series converges

(29)
$$\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^3}$$
 C.T. $\Rightarrow \sum \frac{1}{k^{3/2}}$; $\frac{k \ln k}{(k+1)^3} \le \frac{k \sqrt{k}}{(k+1)^3}$ for $k \ge 1$; series conv

(30)
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$
 C.T. $\rightarrow \sum \frac{1}{n^2}$; series conv or L.C.T. or I.T.

(31)
$$\sum_{n=1}^{\infty} \frac{2^n}{(2n+1)!}$$
 ratio test, series converges

(32)
$$\sum_{i=1}^{\infty} (-1)^{i} \frac{\sqrt{j}}{i+5}$$
 AST; series converges

(33)
$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n \sqrt{n}}$$
 C.T. $\Rightarrow \sum \frac{1}{n^{3/2}}$; series conv

(34)
$$\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2n}}$$
 RootT: rewrite: $\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2^n}} = \sum_{n=1}^{\infty} \frac{(2n)^n}{(n^2)^n}$ (conv)

(35)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$
 RootT: $\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1} < 1$ (conv)

(36)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}} \text{ very difficult! } C.T. \rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ ; conv}$$

$$\ln n \ge e^2 \text{ for } n \ge 1700 \text{ (} \ln(1700) \approx 7.44 \text{ ; } e^2 \approx 7.39 \text{)}$$

$$\frac{1}{(\ln n)^{\ln n}} \le \frac{1}{(e^2)^{\ln n}} = \frac{1}{e^{2 \ln n}} = \frac{1}{n^2} \text{ for } n \ge 1700$$

$$\sum \frac{1}{n^2}$$
; conv; $\sum \frac{1}{(\ln n)^{\ln n}}$ is also conv

(37)
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)^n$$
 Root Test: series converges

(38)
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)$$
 nTT fails!; C.T. $\rightarrow \sum \frac{1}{n}$; series div