Some theoretical results - using Inverses

- (1) AB = AC and A^{-1} exists $\Rightarrow B = C$ (cancellation law)
- (2) AB = O and A^{-1} exists $\Rightarrow B = O$
- (3) $A^2 = I$ and A^{-1} exists $\Rightarrow A = A^{-1}$

Square Matrices which commute (exceptions to the rule)

(1) $A A^{-1} = A^{-1} A = I$ (a matrix and its inverse)

- (2) A B = B A (if A and B are diagonal matrices)
- (3) A I = I A = A (if A is square)
- (4) A O = O A = O (if both A and O are square)

Square Matrices which do not have inverses

- (1) O
- (2) matrices with multiple rows (columns)
- (3) matrices with a row of zeros In general, matrices whose determinant is zero are not invertible.