(1) $A B=A C$ and A^{-1} exists $\Rightarrow B=C \quad$ (cancellation law)
(2) $A B=O$ and A^{-1} exists $\Rightarrow B=O$
(3) $A^{2}=I$ and A^{-1} exists $\Rightarrow A=A^{-1}$

Square Matrices which commute (exceptions to the rule)
(1) $A A^{-1}=A^{-1} A=I \quad$ (a matrix and its inverse)
(2) $A B=B A$ (if A and B are diagonal matrices)
(3) $A I=I A=A \quad$ (if A is square)
(4) $\mathrm{AO}=\mathrm{OA}=\mathrm{O}$ (if both A and O are square)

Square Matrices which do not have inverses
(1) O
(2) matrices with multiple rows (columns)
(3) matrices with a row of zeros

In general, matrices whose determinant is zero are not invertible.

