Theorems

(1) Every set of vectors containing \vec{O} is LD. i.e. Prove $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}, \vec{O}\right\}$ is LD.
(2) If $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ is LI, then every subset of vectors in S is LI.
in particular if $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ is LI, prove $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is LI.
(3) If $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ is LD, prove $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}, \overrightarrow{v_{n+1}}\right\}$ is LD.
(4) Span $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ is a subspace \mathbb{R}^{n} if $\overrightarrow{v_{i}}$'s are vectors in \mathbb{R}^{n}.
(5) (a) $S=\left\{x \in \mathbb{R}^{n} \mid A \vec{x}=\vec{O}\right\}$ is a subspace of \mathbb{R}^{n}. This is the Null A or the solution space of $A \vec{x}=\vec{O}$.
(b) $S=\left\{x \in \mathbb{R}^{n} \mid A \vec{x}=\vec{b}, \vec{b} \neq \vec{O}\right\}$ is not a subspace of \mathbb{R}^{n}.
(6) a set of one non-zero vector is LI.
(7) a set of two non-zero vectors is LD if and only if the 2 vectors are multiples.
(8) a set of vectors is LD if and only if at least one of the vectors $=$ a L.C. of remaining vectors.
(9) If $\{\vec{u}, \vec{v}, \vec{w}\}$ is a basis for a 3-d subspace S of a vector space V , prove any vector in $S=$ a unique (only one!) L.C. of $\{\vec{u}, \vec{v}, \vec{w}\}$.
(10) If $\{\vec{u}, \vec{v}\}$ is LI and $\vec{w} \notin \operatorname{Span}\{\vec{u}, \vec{v}\}$, then $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI.
(start with equation $c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=\vec{O}$)
(11) If dimension of S is 3 , and $\{\vec{u}, \vec{v}, \vec{w}\}$ spans S, prove $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI. ($S=$ a subspace or Vector Space)
(12) If dimension of S is 3 , and $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI , prove $\operatorname{Span}\{\vec{u}, \vec{v}, \vec{w}\}=S$ ($S=$ a subspace or V.S.)
(13) If $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ is LI and A^{-1} exists, prove $\left\{A \overrightarrow{v_{1}}, A \overrightarrow{v_{2}}, \ldots, A \overrightarrow{v_{n}}\right\}$ is LI.

Theoretical Questions:
(14) If $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI, (a) prove $\{\vec{u}-\vec{v}, \vec{v}-\vec{w}, \vec{w}-\vec{u}\}$ is LD ; (b) prove $\{\vec{u}, \vec{u}+\vec{v}, \vec{u}+\vec{v}+\vec{w}\}$ is LI. (11) and (12) \Rightarrow if the dimension of a space (subspace or V.S.) is known and you select a basis for the space \rightarrow to prove that your set of selected vectors is a basis for the subspace (or V.S.), you do not need to prove both spanning and LI - one of these is enough! we usually prove LI it is easier!

