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{ }

{ }
(1) Every set of vectors containing  is LD. i.e. Prove  is LD. 

(2) If   is L  , then every subset of vectors in  is L .

in particular if 
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 is L , prove  is L . 

(3) If  is LD , prove  is LD.  

(4) Span  is a subspace  if  's are vectors in .  

(5) 
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( a)  is a subspace of . This is the Null A or the 

            solution space of   .  

     ( b)  is not a subspace of .  

(6) a set of one non-zero vector is 
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L .   

(7) a set of two non-zero vectors is LD if and only if the 2 vectors are multiples. 

(8) a set of vectors is LD if and only if at least one of the vectors = a L.C. of remaining vectors. 

(9) If u
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 is a basis for a 3-d subspace  of a vector space V, prove any vector in  = a unique  

     ( only one! ) L.C. of  . 

(10) If  is L  and Span  , then  is L . 
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   ( start with equation  )  

(11) If dimension of  is 3, and  spans  , prove 

        is L . (  = a subspace or Vector Space ) 

(12) If dimension of  is 3, and 
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 is L  , prove Span  (  = a subspace or V.S. )  

(13) If  is L  and  exists, prove   is L .  

Theoretical Questions:  

(14) If  is 
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{ } { }L , ( a) prove  is LD ; ( b) prove  is L . 

(11) and (12)  if the dimension of a space ( subspace or V.S. ) is known and you select a basis 

for the space  to prov

, , , ,u v v w w u u u v u v wΙ − − − + + + Ι

⇒

→ e that your set of selected vectors is a basis for the subspace ( or V.S. ) , 

you do not need to prove both spanning and L  one of these is enough! we usually prove L  -

it is easier!   
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