<u>Theorems</u>

- (1) Every set of vectors containing \vec{O} is LD. i.e. Prove $\left\{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}, \vec{O}\right\}$ is LD.
- (2) If $S = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ is LI, then every subset of vectors in S is LI.
- in particular if $\left\{ \overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n} \right\}$ is LI, prove $\left\{ \overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3} \right\}$ is LI.
- (3) If $S = \left\{ \overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n} \right\}$ is LD , prove $\left\{ \overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}, \overrightarrow{v_{n+1}} \right\}$ is LD.
- (4) Span $\left\{ \vec{v_1}, \vec{v_2}, ..., \vec{v_n} \right\}$ is a subspace \mathbb{R}^n if $\vec{v_i}$'s are vectors in \mathbb{R}^n .
- (5) (a) $S = \left\{ x \in \mathbb{R}^n \mid A\vec{x} = \vec{O} \right\}$ is a subspace of \mathbb{R}^n . This is the Null A or the solution space of $A\vec{x} = \vec{O}$.
 - (b) $S = \left\{ x \in \mathbb{R}^n \left| A \vec{x} = \vec{b}, \vec{b} \neq \vec{O} \right\} \right\}$ is not a subspace of \mathbb{R}^n .
- (6) a set of one non-zero vector is LI.
- (7) a set of two non-zero vectors is LD if and only if the 2 vectors are multiples.
- (8) a set of vectors is LD if and only if at least one of the vectors = a L.C. of remaining vectors.
- (9) If $\{\vec{u}, \vec{v}, \vec{w}\}\$ is a basis for a 3-d subspace *S* of a vector space V, prove any vector in *S* = a <u>unique</u> (only one!) L.C. of $\{\vec{u}, \vec{v}, \vec{w}\}$.
- (10) If $\{\vec{u}, \vec{v}\}\$ is LI and $\vec{w} \notin \text{Span}\{\vec{u}, \vec{v}\}\$, then $\{\vec{u}, \vec{v}, \vec{w}\}\$ is LI. (start with equation $c_1\vec{u} + c_2\vec{v} + c_3\vec{w} = \vec{O}$)
- (11) If dimension of S is 3, and $\left\{ \vec{u}, \vec{v}, \vec{w} \right\}$ spans S , prove

 $\left\{ ec{u},ec{v},ec{w}
ight\}$ is LI. (S = a subspace or Vector Space)

(12) If dimension of *S* is 3, and $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI, prove $\text{Span}\{\vec{u}, \vec{v}, \vec{w}\} = S$ (*S* = a subspace or V.S.) (13) If $\{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ is LI and A^{-1} exists, prove $\{A\vec{v_1}, A\vec{v_2}, ..., A\vec{v_n}\}$ is LI. Theoretical Questions:

(14) If $\{\vec{u}, \vec{v}, \vec{w}\}$ is LI, (a) prove $\{\vec{u} - \vec{v}, \vec{v} - \vec{w}, \vec{w} - \vec{u}\}$ is LD; (b) prove $\{\vec{u}, \vec{u} + \vec{v}, \vec{u} + \vec{v} + \vec{w}\}$ is LI. (11) and (12) \Rightarrow if the dimension of a space (subspace or V.S.) is known and you select a basis for the space \rightarrow to prove that your set of selected vectors is a basis for the subspace (or V.S.), you do not need to prove both spanning and LI – one of these is enough! we usually prove LI - it is easier!