THEORY

1.

$$
A \sim B \Rightarrow B \sim A
$$

$A \sim B \Rightarrow \exists \underbrace{E_{1} E_{2} \ldots E_{n}}_{\text {elementary matrices }}$ such that $E_{n} \ldots E_{2} E_{1} A=B \Rightarrow A=\left(E_{n} \ldots E_{2} E_{1}\right)^{-1} B=E_{1}^{-1} E_{2}^{-1} \ldots E_{n}^{-1} A$
when E_{i}^{-1} is an elementary matrix (for all i) (inverse of an elementary is elementary) $\Rightarrow B \sim A$
2.

$$
A \sim B, B \sim C \Rightarrow A \sim C
$$

$A \sim B \Rightarrow \exists \underbrace{E_{1} E_{2} \ldots E_{n}}_{\text {elementary matrices }}$ such that $E_{n} \ldots E_{2} E_{1} A=B \Rightarrow A=\left(E_{n} \ldots E_{2} E_{1}\right)^{-1} B=E_{1}^{-1} E_{2}^{-1} \ldots E_{n}^{-1} A$
$B \sim C \Rightarrow \exists \underbrace{F_{1} F_{2} \ldots F_{k}}_{\text {elementary matrices }}$ such that $F_{k} \ldots F_{2} F_{1} B=C$
such that

$$
\underbrace{F_{k} \ldots F_{2} F_{1} \underbrace{E_{n} \ldots E_{2} E_{1} A}_{\text {substituting for } B}=C \Rightarrow A \sim C}_{\text {all elementary matrices except } A}
$$

Equivalences Let A be an $n x n$ square matrix and $R=R R E F$ of A.

$\begin{array}{ll}\text { (1) } A^{-1} \exists & \text { (2) } A \vec{x}=\vec{b} \text { has a unique solution }\end{array}$
(3) $A \vec{x}=\overrightarrow{0}$ has a unique solution (4) Rank $A=$ \# leading ones in $\mathrm{R}=\mathrm{n}$
(5) $A \sim \mathrm{I} \quad$ (6) $A=$ a product of elementary matrices (7) $\operatorname{det} A \neq 0$
"Alternate" list of Equivalent Statements
(1) $A^{-1} ¥ \quad$ (2) $A \vec{x}=\vec{b}$ has a parametric solution or is inconsistent
(3) $A \vec{x}=\overrightarrow{0}$ has a parametric solution (hence, nontrivial solutions) (4) Rank $A<\mathrm{n}$
(5) $A \sim R$ (where R has at least one row of zeros)
(6) A cannot be written as a product of elementary matrices (7) $\operatorname{det} A=0$

Problems - Anton: Ex 2.1 9, 12, 13, 18, 19
Ex 2.2 2, 3, 4, 7, 10, 12, 13, 17
Ex 2.3 2, 3, 4, 5, 6-12, 13
Ex $2.41,2,4,5,7,9,10,11,12,22, \underbrace{16-18,23}_{\text {Cramer's Rule! }}, \underbrace{25,26}_{\text {theory }}$
Ex $1.6 ; 24,25$ (theory), Ex 1.5 ; 19, 20 (theory)
Note in (20) A is singular means A is square and $A^{-1} \nexists$
(1) If $\overrightarrow{x_{1}}$ is a solution to $A \vec{x}=\vec{b}$ and $\overrightarrow{x_{2}}$ is a solution to $A \vec{x}=\overrightarrow{0}$, show that $\overrightarrow{x_{1}}+k \overrightarrow{x_{2}}$ is a solution to $A \vec{x}=\vec{b}$.
(2) Let A, B, P represent $n \times n$ invertible matrices (i.e. $A^{-1}, B^{-1}, P^{-1} \exists$) and $B=P A P^{-1}$
(a) show that $B^{2}=P A^{2} P^{-1}$
(b) show that $B^{-1}=P A^{-1} P^{-1}$
(3) (a) If $A^{2}=\mathrm{I}$, prove $\operatorname{det} A= \pm 1$
(b) If $A^{2}=A$, prove $\operatorname{det} A=0$ or 1
(Take the det of both sides)
(4) $A_{3 \times 3} ; B_{3 \times 3}$ such that $\operatorname{det}\left(3 A^{-1}\right)=-5$ and $\operatorname{det}\left(A^{2} B^{-1}\right)=-5$. Find det A; $\operatorname{det} B$.
(Answer: $\operatorname{det} A=-\frac{27}{5} ; \operatorname{det} B=-\frac{(27)^{2}}{125}$)

