Math - Calculus II
TRIG SUBSTITUTION or SUBSTITUTION or ALGEBRAIC SUBSTITUTION
Determine:
(a) $\int \frac{x d x}{\sqrt{x^{2}-1}}$
; (b) $\int_{0}^{\sqrt{3}} \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$
; (c) $\int \frac{x^{3} d x}{\sqrt{4-x^{2}}}$;
; (d) $\int \frac{x^{2} d x}{\left(9-4 x^{2}\right)^{3 / 2}}$
(e) $\int \frac{\sqrt{9 x^{2}-4}}{x} d x$; (f) $\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}$; (g) $\int x^{3} \sqrt{x^{2}-4} d x$
(h) $\int \frac{\mathrm{x}^{3} \mathrm{dx}}{\sqrt{4 \mathrm{x}^{2}-9}}$; (i) $\int_{\sqrt{5}}^{\sqrt{20}} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}-4\right)^{3 / 2}}$;(j) $\int_{0}^{3 / 2} \frac{\mathrm{dx}}{\sqrt{9-2 \mathrm{x}^{2}}}$;(k) $\int \frac{3 \mathrm{x}+4}{\mathrm{x}^{2}+1} \mathrm{dx}$

Answers:
(a) subs: $\sqrt{x^{2}-1}+C \quad ;$ (b) trig subs: $\frac{\sqrt{3}}{4}$;
(c) alg subs: $\frac{1}{3}\left(4-x^{2}\right)^{3 / 2}-4 \sqrt{4-x^{2}}+C$
(d) trig subs: $\frac{x}{4 \sqrt{9-4 x^{2}}}-\frac{1}{8} \arcsin \left(\frac{2 x}{3}\right)+C$
(e) trig subs: $\sqrt{9 x^{2}-4}-2 \operatorname{arcsec}\left(\frac{3 x}{2}\right)+C$
(f) trig subs: $\frac{\sqrt{x^{2}-1}}{x}+C$
(g) alg subs: $\frac{4}{3}\left(x^{2}-4\right)^{3 / 2}+\frac{1}{5}\left(x^{2}-4\right)^{5 / 2}+C$
(h) alg subs: $\frac{9}{16} \sqrt{4 x^{2}-9}+\frac{1}{48}\left(4 x^{2}-9\right)^{3 / 2}+C \quad ;$ (i) trig subs: $\frac{\sqrt{5}}{8}$
(j) trig subs: $\frac{\pi}{4 \sqrt{2}} ;(\mathrm{k})$ split into 2 integrals: $\frac{3}{2} \ln \left(x^{2}+1\right)+4 \arctan x+C$

Math - Calculus II

PARTIAL FRACTIONS

Ex 7.4 p 498 (Stewart)

$$
\int \frac{\text { polynomial }}{\text { polynomial }} \mathrm{dx}=\int \frac{\mathrm{P}(\mathrm{x})}{\mathrm{Q}(\mathrm{x})} \mathrm{dx} \quad ; \text { degree of numerator }<\text { degree of denominator }
$$

otherwise long division first ; then factor the denominator
Case I: factors of denominator are all linear and raised to the first power
example: $\frac{x^{2}+2}{x(x-1)(x+2)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+2}$
solve for A, B, C and the integration is easy.
Case II: factors of denominator are all linear but some of the factors are raised to a power higher than one.

Example: $\frac{x^{2}+2}{x^{3}(x+2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+2}$ all powers between 1 and 2 must be included.
Again, solve for A, B, C, D and the resulting integrals are easy to solve.
Ex 7.4 : 1-7, 13-27, 39, 51($\left.u=e^{\mathbf{x}}\right)$, 52($\left.\mathbf{u}=\boldsymbol{\operatorname { s i n }} \mathbf{x}\right)\left(4^{\text {th }}\right.$ edition)
Ex 7.4: 1-4, 7-28, 35 ($5^{\text {th }}$ edition)

