1 Various

1. Find all the real values of x for which the derivative of the function defined by $k(x)=\frac{x^{2}}{e^{x}}$ is zero.
2. Find all the critical numbers for $y=\frac{e^{x^{2}}}{x^{2}}$
3. Find the point on the graph of $y=\sqrt{x}$ which is closest to the point $(4,0)$.
4. Consider $f(x)=x^{2}+2 x$ on $[0,2]$. Find at least one value of x in the interval $(0,2)$ for which the slope of the tangent to $y=f(x)$ is parallel to the line segment joining the points $(0,0)$ and $(2,8)$.
5. Find all critical numbers of the first derivative of $y=x^{5} e^{-3 x}$.
6. Given $y=x \sqrt{8-x^{2}}$. Find all values of x such that $\frac{d y}{d x}=0$.
7. If $\left.y=(3 x-4)^{(} 2 x-1\right)^{2}$ find all values of x for which $\frac{d y}{d x}=0$.
8. Given $f(x)=\frac{x^{2}+2}{x^{2}-4}$
(a) Find $f^{\prime}(x)$ and simplify.
(b) Find all critical values of f.
(c) Find all vertical and horizontal asymptotes.
(d) Find any absolute extrema on the interval $[-1,2)$.
9. Find $f(x)$ given (i) $f(1)=e+2$,
(ii) $f^{\prime}(1)=e+2$, and (iii) $f^{\prime \prime}(x)=e^{x}-\frac{1}{x^{2}}$.
10. Find all values of x such that $f^{\prime}(x)=0$ if $f(x)=(3-x)^{3}(2 x+1)^{2}$
11. The position of a particle at time t is given by $s=\frac{1}{2} \sin 3 t$. Find its velocity $\frac{d s}{d t}$, and its acceleration $\frac{d^{2} s}{d t^{2}}$ when $t=\frac{\pi}{6}$
12. Find f^{\prime} and simplify. State all critical numbers for f.
(a) $f(x)=x^{4} \ln x$
(b) $f(x)=\frac{x^{1 / 3}}{2 x+1}$
13. Given the function $f(x)=\frac{x^{2}}{e^{x}}$, specify the interval(s) over which $f(x)$ is increasing.
14. Given $f(x)=2 \sin x+\sin 2 x$, Determine if the function concave up, concave down, or neither when $x=\frac{\pi}{2}$. Give your reason.
15. Give the equations of all asymptotes of the function $y=\frac{x^{2}+15 x-16}{1-x^{2}}$

Answers:

1. $x=0,2$
2. $x=0, \pm 1$
3. $\left(\frac{7}{2}, \sqrt{\frac{7}{2}}\right)$
4. 1 .
5. $0,5 / 3$
6. ± 2.
7. $1 / 2$ and $19 / 18$
8. (a) $f^{\prime}(x)=\frac{-12 x}{\left(x^{2}-4\right)^{2}}$
(b) $x=0$.
(c) Vertical asymptotes: $x= \pm 2$

Horizontal asymptote: $y=1$
(d) Absolute maximum at $\left(0,-\frac{1}{2}\right)$.
9. $f(x)=e^{x}+\ln |x|+x+1$
10. $x=3,-1 / 2,9 / 10$
11. $\left.\frac{d s}{d t}\right|_{t=\pi / 6}=0,\left.\frac{d^{2} s}{d t^{2}}\right|_{t=\pi / 6}=-9 / 2$
12. (a) $f^{\prime}(x)=x^{3}(4 \ln x+1)$

Critical numbers $x=0, e^{-1 / 4}$
(b) $\frac{1-4 x}{3(2 x+1)^{2} x^{2 / 3}}$

Critical numbers $x=1 / 4$
13. $[0,2]$.
14. Concave down since $f^{\prime \prime}(\pi / 2)=-2<0$.
15. Vertical asymptotes: $x=-1$ only Horizontal asymptote: $y=-1$

