1 Various

- 1. Find all the real values of x for which the derivative of the function defined by $k(x) = \frac{x^2}{e^x}$ is zero.
- 2. Find all the critical numbers for $y = \frac{e^{x^2}}{x^2}$
- 3. Find the point on the graph of $y = \sqrt{x}$ which is closest to the point (4,0).
- 4. Consider $f(x) = x^2 + 2x$ on [0,2]. Find at least one value of x in the interval (0,2) for which the slope of the tangent to y = f(x) is parallel to the line segment joining the points (0,0) and (2,8).
- 5. Find all critical numbers of the first derivative of $y = x^5 e^{-3x}$.
- 6. Given $y = x\sqrt{8-x^2}$. Find all values of x such that $\frac{dy}{dx} = 0$.
- 7. If $y = (3x 4)(2x 1)^2$ find all values of x for which $\frac{dy}{dx} = 0$.
- 8. Given $f(x) = \frac{x^2 + 2}{x^2 4}$
 - (a) Find f'(x) and simplify.
 - (b) Find all critical values of f.
 - (c) Find all vertical and horizontal asymptotes
 - (d) Find any absolute extrema on the interval [-1,2).
- 9. Find f(x) given (i) f(1) = e + 2,
 - (ii) f'(1) = e + 2, and (iii) $f''(x) = e^x \frac{1}{x^2}$.
- 10. Find all values of x such that f'(x) = 0 if $f(x) = (3-x)^3(2x+1)^2$
- 11. The position of a particle at time t is given by $s = \frac{1}{2} \sin 3t$. Find its velocity $\frac{ds}{dt}$, and its acceleration $\frac{d^2s}{dt^2}$ when $t = \frac{\pi}{6}$
- 12. Find f' and simplify. State all critical numbers for f.
 - (a) $f(x) = x^4 \ln x$
 - (b) $f(x) = \frac{x^{1/3}}{2x+1}$

- 13. Given the function $f(x) = \frac{x^2}{e^x}$, specify the interval(s) over which f(x) is increasing.
- 14. Given $f(x) = 2\sin x + \sin 2x$, Determine if the function concave up, concave down, or neither when $x = \frac{\pi}{2}$. Give your reason.
- 15. Give the equations of all asymptotes of the function $y = \frac{x^2 + 15x 16}{1 x^2}$

Answers:

- 1. x = 0, 2
- 2. $x = 0, \pm 1$
- 3. $(\frac{7}{2}, \sqrt{\frac{7}{2}})$
- 4. 1.
- 5. $0, \frac{5}{3}$
- 6. ± 2 .
- 7. $\frac{1}{2}$ and $\frac{19}{18}$
- 8. (a) $f'(x) = \frac{-12x}{(x^2 4)^2}$
 - (b) x = 0.
 - (c) Vertical asymptotes: $x = \pm 2$ Horizontal asymptote: y = 1
 - (d) Absolute maximum at $(0, -\frac{1}{2})$.
- 9. $f(x) = e^x + \ln|x| + x + 1$
- 10. $x = 3, -\frac{1}{2}, \frac{9}{10}$
- 11. $\frac{ds}{dt}\Big|_{t=\frac{\pi}{6}} = 0$, $\frac{d^2s}{dt^2}\Big|_{t=\frac{\pi}{6}} = -\frac{9}{2}$
- 12. (a) $f'(x) = x^3(4 \ln x + 1)$ Critical numbers $x = 0, e^{-1/4}$
 - (b) $\frac{1-4x}{3(2x+1)^2x^{2/3}}$ Critical numbers $x = \frac{1}{4}$
- 13. [0, 2].
- 14. Concave down since $f''(\sqrt[\pi]{2}) = -2 < 0$.
- 15. Vertical asymptotes: x = -1 only Horizontal asymptote: y = -1