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Cross Product Properties   
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To find angle between 2 vectors                                                                   u  
                                                                                                                                θ 

Use 
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To find angle in a ∆ ABC: form vectors to find angle A then use AB•ACcos A = 
AB  AC

 

cosine ( angle between 2 intersecting lines ) =  
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To find the area of a parallelogram formed by vectors  u   and  v  , find u v×                       h 

area of triangle formed by  u   and  v   is 12 u v×                                                       A                        C 

to find area of triangle ABC :  AB×AC1
2  

to find the perpendicular height from B to AC ( for example ):  1 1
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                                                                                                                                             P 
To find the distance from a point P to a line L containing points A and B in  :                   h 3
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To find distance from a point to a plane = 0Proj  P  P n
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Distance between 2 parallel planes = 0 Proj  P  P n
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To find distance between skew lines =  Proj  P Q n

                        P 

where n d      1 d= × 2

To find the equation of a line in   or  2 3

vector form: where a x    or  parametric form: , ,b y c= = = z
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To find the equation of a plane in    3
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  where   , normal to the plane
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Scalar Triple Product   u v  ( )
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When are vectors : 
 
( a) parallel ? when they are scalar multiples 
( b) perpendicular ? when their dot product  = 0 
( c) equal ? when all corresponding components are identical 
 
 
 
When are lines : 
 
( a) parallel ? when there is no intersection and the d 'sare multiples 
( b) perpendicular ? when there is a single intersection point and d d1 2 0• =  

( c) equal ? when there is an infinite intersection and d 's  are multiples 
 
________________________________________________________________________________ 
 
Volume of parallelepiped determined by   and , w w u v= • ×u v   or  absolute value of   

det
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           

 ← order of vectors is irrelevant since the absolute value is being used. 
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u v w v
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     • × =       

 ← Here the order of the vectors is irrelevant – we are not taking the absolute 

value. 
 
Relationship between u v×  and the angle between u ,v  :   sinu v u v θ× =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
Vectors Problems 

  

         v    u  of  point terminal  the  be  R  let     

  andly  respective  Q  and  P  points  of  vectors  position  the  be  v  and  u  Let (1)

+
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        u                                                       v   OQ   ,  u  OP  , origin  the  O ===   
 
   O                                       Q 

                     v                                  
  RO  f) (  ;  RQ  e) (  ;  QR  d) (  ;  RP  c) (  ;  PQ  b) (  ;  QP  a) (

       :  v  and  u  of  terms  in  following  the  Express
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  . not  or  parallel  are  v  and  u    whetherDetermine  (2)
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====  

(3)  Find  a  point  Q  such  that  PQ  has  

     ( i)  the  same  direction  and  the  same  magnitude  as  v   ( i.e.  PQ  v  )  

     ( ii)  the  opposite  direction  and  the  same  magnit

=

ude  as  v   ( i.e.  PQ  - v  )   

     ( a)  P ( -1 , 2 , 2 )  ,  v   ( 1 , 2 , -1 )                    (  b)  P ( 3 , 0 , -1 )  ,  v   ( 2 , -1 , 3 )   

=

= =
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   that  such  ) scalars (  c , c , c  Find  (5)
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(7)  Let   P     ( 2 , 1 , -2 )  ,  P     ( 1 , -2 , 0 )  .  Find  the  coordinates  of  P  such  that   
      ( a)  P  is  1/5  of  the  way  from  P   to  P       ( b)  P  is  1/4  of  the  wa

= =

 1  

 1  2

 1  2

y  from  P   to  P   
      ( c)  P  is  1/2  of  the  way  from  P   to  P   ( i.e.  the  midpoint )  

      Note :  P  is  a  point  on  the  vector  P  P      

2

Answers :  (1 a)  u - v  ; (1 b)  v  - u ; (1 c) - v  ; (1 d) u ; (1 e) - u ; (1 f) - u - v  ; (2 a) no ; (2 b) yes, u=-3v  ; (2 c) no  

                 (2 d) yes, v=-4u ; (3 a) ( i)  ( 0 , 4 
( ) 1  2  3

, 1 ) , ( ii)  ( -2 , 0 , 3 ) ; (3 b) ( i)  ( 5 , -1 , 2 ) , ( ii) ( 1 , 1 , -4 )  
                 (4 b)  ( -16 , 4 , 9 ) ; (5 b) c   -5 , c   8 , c   6 ; (7 a) P  9/5 , 2/5 , -8/5  ;   

       

= = =

( ) ( )          (7 b) P  7/4 , 1/4 , -3/2  ; (7 c) P  3/2 , -1/2 , -1      

 
Text : Ex 3.1 ( 1 – 11 ) and Ex 3.2 ( 1 – 6 ) 
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