$$\| \vec{u} \| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Unit vector along $\vec{u} = \frac{1}{\left\| \begin{array}{c} \vec{u} \end{array} \right\|} \vec{u}$

Vector of length k along $\vec{u} = \frac{k}{\left\| \vec{u} \right\|} \vec{u}$

Dot Product Properties

(1) $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$ (2) $\vec{u} \bullet (\vec{v} + \vec{w}) = \vec{u} \bullet \vec{v} + \vec{u} \bullet \vec{w}$ (3) $\vec{u} \bullet \vec{u} = \|\vec{u}\|^2$ (4) $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \bullet (\vec{u} + \vec{v}) = \vec{u} \bullet \vec{u} + 2\vec{u} \bullet \vec{v} + \vec{v} \bullet \vec{v} = \|\vec{u}\|^2 + 2\vec{u} \bullet \vec{v} + \|\vec{v}\|^2$ (5) $k(\vec{u} \bullet \vec{v}) = \vec{u} \bullet (k\vec{v}) = (k\vec{u}) \bullet \vec{v}$

VECTORS (Formulas)

To find the equation of a plane in \mathbb{R}^3

$$\vec{n} \bullet (x - x_1, y - y_1, z - z_1) = 0$$
 where $\vec{n} = (a, b, c)$, normal to the plane $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$ (point-normal form) $ax + by + cz + d = 0$ (standard form)

<u>Scalar Triple Product</u> $\vec{u} \bullet (\vec{v} \times \vec{w}) = \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}$

VECTORS (Formulas)

When are vectors :

- (a) parallel ? when they are scalar multiples
- (b) perpendicular ? when their dot product = 0
- (c) equal ? when all corresponding components are identical

When are lines :

- (a) parallel ? when there is no intersection and the \vec{d} 's are multiples
- (b) perpendicular ? when there is a single intersection point and $\vec{d_1} \bullet \vec{d_2} = 0$
- (c) equal ? when there is an infinite intersection and \vec{d} 's are multiples

Volume of parallelepiped determined by \vec{u}, \vec{v} and $\vec{w} = |\vec{w} \bullet \vec{u} \times \vec{v}|$ or absolute value of

 $det \begin{bmatrix} \vec{v} \\ \vec{v} \\ \vec{u} \end{bmatrix} \leftarrow order of vectors is irrelevant since the <u>absolute</u> value is being used.$

$$\vec{u} \bullet \vec{v} \times \vec{w} = \det \begin{pmatrix} \vec{u} \\ \vec{v} \\ \vec{w} \end{pmatrix}$$

 \leftarrow Here the order of the vectors is irrelevant – we are not taking the absolute

value.

Relationship between $\vec{u} \times \vec{v}$ and the angle between $\vec{u}, \vec{v} : \|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$

Vectors Problems

(1) Let \vec{u} and \vec{v} be the position vectors of points P and Q respectively and let R be the terminal point of $\vec{u} + \vec{v}$ Ρ $O = the \mbox{ origin}, \ \overrightarrow{OP} = \vec{u} \ , \ \overrightarrow{OQ} \ = \vec{v}$ u Q Express the following in terms of u and v : V (a) \overrightarrow{QP} ; (b) \overrightarrow{PQ} ; (c) \overrightarrow{RP} ; (d) \overrightarrow{QR} ; (e) \overrightarrow{RQ} ; (f) \overrightarrow{RO} (2) Determine whether \vec{u} and \vec{v} are parallel or not . (a) $\vec{u} = (1, 2, -1)$, $\vec{v} = (2, 1, 0)$ (b) $\vec{u} = (3, -6, 3)$, $\vec{v} = (-1, 2, -1)$ (d) $\vec{u} = (2, 0, -1)$, $\vec{v} = (-8, 0, 4)$ (c) $\vec{u} = (1, 0, 1)$, $\vec{v} = (-1, 0, 1)$ (3) Find a point Q such that \overrightarrow{PQ} has (i) the same direction and the same magnitude as \vec{v} (i.e. $PQ = \vec{v}$) (ii) the opposite direction and the same magnitude as \vec{v} (i.e. $\vec{PQ} = -\vec{v}$) (a) P(-1,2,2), $\vec{v} = (1,2,-1)$ (b) P(3,0,-1), $\vec{v} = (2,-1,3)$ (4) If $\vec{u} = (3, -1, 0)$, $\vec{v} = (4, 0, 1)$, $\vec{w} = (1, 1, 3)$, find \vec{x} such that : (a) $3(2\vec{u}+\vec{x})+\vec{w}=2\vec{x}-\vec{v}$ (b) $2(3\vec{v}-\vec{x})=5\vec{w}+\vec{u}-3\vec{x}$ (5) Find c_1, c_2, c_3 (scalars) such that (a) $c_1\vec{u} + c_2\vec{v} + c_3\vec{w} = (2, -1, 6)$ (b) $c_1\vec{u} + c_2\vec{v} + c_3\vec{w} = (1, 3, 0)$ where $\vec{u} = (1, 1, 2)$, $\vec{v} = (0, 1, 2)$, $\vec{w} = (1, 0, -1)$ (6) Let $\vec{u} = (3, -1, 0)$, $\vec{v} = (4, 0, 1)$, $\vec{w} = (1, 1, 1)$, show that there does not exist c_1, c_2, c_3 (scalars) such that : (a) $c_1 \vec{u} + c_2 \vec{v} + c_3 \vec{w} = (1, 2, 1)$ (b) $c_1 \vec{u} + c_2 \vec{v} + c_3 \vec{w} = (5, 6, -1)$ (7) Let $P_1 = (2, 1, -2)$, $P_2 = (1, -2, 0)$. Find the coordinates of P such that (a) P is 1/5 of the way from P₁ to P₂ (b) P is 1/4 of the way from P₁ to P₂ (c) P is 1/2 of the way from P₁ to P₂ (i.e. the midpoint) Note: P is a point on the vector $\overrightarrow{P, P}$ Answers : (1 a) $\vec{u} - \vec{v}$; (1 b) $\vec{v} - \vec{u}$; (1 c) $- \vec{v}$; (1 d) \vec{u} ; (1 e) $- \vec{u}$; (1 f) $- \vec{u} - \vec{v}$; (2 a) no; (2 b) yes, $\vec{u} = -3\vec{v}$; (2 c) no $(2 \text{ d}) \text{ yes}, \vec{v} = -4\vec{u}; (3 \text{ a}) (i) (0, 4, 1), (ii) (-2, 0, 3); (3 \text{ b}) (i) (5, -1, 2), (ii) (1, 1, -4)$ (4 b) (-16, 4, 9); (5 b) $c_1 = -5$, $c_2 = 8$, $c_3 = 6$; (7 a) P (9/5, 2/5, -8/5); (7 b) P (7/4, 1/4, -3/2); (7 c) P (3/2, -1/2, -1)

Text : Ex 3.1 (1 – 11) and Ex 3.2 (1 – 6)