VECTORS (Formulas) $\vec{u}+\vec{v}$
$\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}$
Unit vector along $\vec{u}=\frac{1}{\|\vec{u}\|} \vec{u}$

Vector of length k along $\vec{u}=\frac{k}{\|\vec{u}\|} \vec{u}$

Dot Product Properties

(1) $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$
(2) $\vec{u} \bullet(\vec{v}+\vec{w})=\vec{u} \bullet \vec{v}+\vec{u} \bullet \vec{w}$
(3) $\vec{u} \bullet \vec{u}=\|\vec{u}\|^{2}$
(4) $\|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \bullet(\vec{u}+\vec{v})=\vec{u} \bullet \vec{u}+2 \vec{u} \bullet \vec{v}+\vec{v} \bullet \vec{v}=\|\vec{u}\|^{2}+2 \vec{u} \bullet \vec{v}+\|\vec{v}\|^{2}$
(5) $k(\vec{u} \bullet \vec{v})=\vec{u} \bullet(k \vec{v})=(k \vec{u}) \bullet \vec{v}$

Cross Product Properties

(1) $\vec{u} \times \vec{O}=\vec{O}$
(2) $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
(3) $\vec{u} \times(k \vec{v})=k(\vec{u} \times \vec{v})=(k \vec{u}) \times \vec{v}$
(4) $\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
(5) $\vec{u} \times \vec{u}=\vec{O}$
(6) $\vec{u} \bullet(\vec{u} \times \vec{v})=0$ (scalar) and $\vec{v} \bullet(\vec{u} \times \vec{v})=0$ (scalar)

To find angle between 2 vectors

Use $\cos \theta=\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$ or $\sin \theta=\frac{\vec{u} \times \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$ (but $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$ is better !)
To find angle in a $\triangle A B C$: form vectors to find angle A then use $\cos A=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\|\|\overrightarrow{A C}\|}$ cosine (angle between 2 intersecting lines) $=\frac{\overrightarrow{d_{1}} \bullet \overrightarrow{d_{2}}}{\left\|\overrightarrow{d_{1}}\right\|\left\|\overrightarrow{d_{2}}\right\|}$

$$
\text { cosine (angle between a line and a plane) }=\frac{\vec{d} \bullet \vec{n}}{\|\vec{d}\|\|\vec{n}\|}
$$

cosine (angle between 2 planes) $=\frac{\overrightarrow{n_{1}} \bullet \overrightarrow{n_{2}}}{\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\|}$
To find the area of a parallelogram formed by vectors \vec{u} and \vec{v}, find $\|\vec{u} \times \vec{v}\|$ area of triangle formed by \vec{u} and \vec{v} is $\frac{1}{2}\|\vec{u} \times \vec{v}\|$

to find area of triangle $\mathrm{ABC}: \frac{1}{2}\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}\|$
to find the perpendicular height from B to $A C$ (for example): $\frac{1}{2}$ (base) $h=\frac{1}{2}\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}\| \rightarrow \mathrm{h}=\frac{\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}\|}{\|\overrightarrow{\mathrm{AC}}\|}$

VECTORS (Formulas)

To find the distance from a point P to a line L containing points A and B in \mathbb{R}^{3} :
$\frac{1}{2}$ (base) $h=\frac{1}{2}\|\overrightarrow{\mathrm{AP}} \times \overrightarrow{\mathrm{AB}}\| \rightarrow \mathrm{h}=\frac{\|\overrightarrow{\mathrm{AP}} \times \overrightarrow{\mathrm{AB}}\|}{\|\overrightarrow{\mathrm{AB}}\|}$

L A B projection $_{\vec{v}} \vec{u}=\frac{\vec{u} \bullet \vec{v}}{\|\vec{v}\|^{2}} \vec{v}=\overrightarrow{w_{1}} ; \overrightarrow{w_{1}}+\overrightarrow{w_{2}}=\vec{u} \Rightarrow \overrightarrow{w_{2}}=\vec{u}-\overrightarrow{w_{1}}$
$\overrightarrow{w_{1}}=$ component of \vec{u} along $\vec{v}, \overrightarrow{w_{2}}=$ component of $\vec{u} \perp$ to \vec{v} To find distance from a point to a plane $=\left\|\operatorname{Proj}_{\bar{n}} \overrightarrow{\mathrm{P}_{0} \mathrm{P}}\right\|$

Distance between 2 parallel planes $=\left\|\operatorname{Proj}_{\vec{n}} \overrightarrow{\mathrm{P}_{0} \mathrm{P}}\right\|$
To find distance between skew lines $=\left\|\operatorname{Proj}_{\vec{n}} \overrightarrow{\mathrm{PQ}}\right\|$ where $\vec{n}=\overrightarrow{d_{1}} \times \overrightarrow{d_{2}}$
To find the equation of a line in \mathbb{R}^{2} or \mathbb{R}^{3} vector form: where $a=\Delta x, b=\Delta y, c=\Delta z$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)+t\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=$ a specific point $+t \vec{d}$
or parametric form:

$$
\left\{\begin{array}{l}
x=x_{1}+a t \\
y=y_{1}+b t \\
z=z_{1}+c t
\end{array}\right.
$$

To find the equation of a plane in \mathbb{R}^{3}
$\vec{n} \bullet\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=0$ where $\vec{n}=(a, b, c)$, normal to the plane $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ (point-normal form)
$a x+b y+c z+d=0 \quad$ (standard form)

Scalar Triple Product $\vec{u} \bullet(\vec{v} \times \vec{w})=\operatorname{det}\left(\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right)$

VECTORS (Formulas)

When are vectors :
(a) parallel ? when they are scalar multiples
(b) perpendicular? when their dot product $=0$
(c) equal ? when all corresponding components are identical

When are lines :
(a) parallel ? when there is no intersection and the \vec{d} 's are multiples
(b) perpendicular? when there is a single intersection point and $\vec{d}_{1} \bullet \vec{d}_{2}=0$
(c) equal? when there is an infinite intersection and \vec{d} 's are multiples

Volume of parallelepiped determined by \vec{u}, \vec{v} and $\vec{w}=|\vec{w} \bullet \vec{u} \times \vec{v}|$ or absolute value of $\operatorname{det}\left(\begin{array}{l}\vec{w} \\ \vec{v} \\ \vec{u}\end{array}\right) \leftarrow$ order of vectors is irrelevant since the absolute value is being used.
$\vec{u} \bullet \vec{v} \times \vec{w}=\operatorname{det}\left(\begin{array}{c}\vec{u} \\ \vec{v} \\ \vec{w}\end{array}\right) \leftarrow$ Here the order of the vectors is irrelevant - we are not taking the absolute value.

Relationship between $\vec{u} \times \vec{v}$ and the angle between $\vec{u}, \vec{v}:\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

Vectors Problems

(1) Let \vec{u} and \vec{v} be the position vectors of points P and Q respectively and let R be the terminal point of $\vec{u}+\vec{v}$

$$
\mathrm{O}=\text { the origin, } \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{v}}
$$

(2) Determine whether \vec{u} and \vec{v} are parallel or not.
(a) $\vec{u}=(1,2,-1), \vec{v}=(2,1,0)$
(b) $\vec{u}=(3,-6,3), \vec{v}=(-1,2,-1)$
(c) $\vec{u}=(1,0,1), \vec{v}=(-1,0,1)$
(d) $\vec{u}=(2,0,-1), \vec{v}=(-8,0,4)$
(3) Find a point Q such that $\overrightarrow{P Q}$ has
(i) the same direction and the same magnitude as \vec{v} (i.e. $\overrightarrow{P Q}=\vec{v}$)
(ii) the opposite direction and the same magnitude as \vec{v} (i.e. $\overrightarrow{P Q}=-\vec{v}$)
(a) $P(-1,2,2), \vec{v}=(1,2,-1)$
(b) $P(3,0,-1), \vec{v}=(2,-1,3)$
(4) If $\vec{u}=(3,-1,0), \vec{v}=(4,0,1), \vec{w}=(1,1,3)$, find \vec{x} such that:
(a) $3(2 \vec{u}+\vec{x})+\vec{w}=2 \vec{x}-\vec{v}$
(b) $2(3 \vec{v}-\vec{x})=5 \vec{w}+\vec{u}-3 \vec{x}$
(5) Find $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ (scalars) such that
(a) $c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=(2,-1,6)$
(b) $c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=(1,3,0)$
wher e $\vec{u}=(1,1,2), \vec{v}=(0,1,2), \vec{w}=(1,0,-1)$
(6) Let $\vec{u}=(3,-1,0), \vec{v}=(4,0,1), \vec{w}=(1,1,1)$, show that there does not exist $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ (scalars) such that:
(a) $\mathrm{c}_{1} \overrightarrow{\mathrm{u}}+\mathrm{c}_{2} \overrightarrow{\mathrm{v}}+\mathrm{c}_{3} \overrightarrow{\mathrm{w}}=(1,2,1)$
(b) $c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=(5,6,-1)$
(7) Let $P_{1}=(2,1,-2), P_{2}=(1,-2,0)$. Find the coordinates of P such that (a) P is $1 / 5$ of the way from P_{1} to $P_{2} \quad$ (b) P is $1 / 4$ of the way from P_{1} to P_{2} (c) P is $1 / 2$ of the way from P_{1} to P_{2} (i.e. the midpoint)

Note: P is a point on the vector $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$
Answers: (1 a) $\vec{u}-\vec{v} ;(1 \mathrm{~b}) \overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}} ;(1 \mathrm{c})-\overrightarrow{\mathrm{v}} ;(1 \mathrm{~d}) \overrightarrow{\mathrm{u}} ;(1 \mathrm{e})-\overrightarrow{\mathrm{u}} ;(1 \mathrm{f})-\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}} ;(2 \mathrm{a}) \mathrm{no} ;(2 \mathrm{~b})$ yes, $\overrightarrow{\mathrm{u}}=-\mathrm{-} \overrightarrow{\mathrm{v}} ;(2 \mathrm{c})$ no (2 d) yes, $\vec{v}=-4 \hat{u}$; (3 a) (i) $(0,4,1)$, (ii) ($-2,0,3$); (3 b) (i) ($5,-1,2$), (ii) ($1,1,-4$) (4 b) $(-16,4,9) ;(5 \mathrm{~b}) \mathrm{c}_{1}=-5, \mathrm{c}_{2}=8, \mathrm{c}_{3}=6 ;(7 \mathrm{a}) \mathrm{P}(9 / 5,2 / 5,-8 / 5)$; (7b) P ($7 / 4,1 / 4,-3 / 2)$; (7 c) P ($3 / 2,-1 / 2,-1$)

Text: Ex 3.1 (1-11) and Ex $3.2(1-6)$

