201-SH3-AB - Exercises \#12: Consumer and Producer Surplus

(1) The demand function for a product is $p=81-x^{2}$, and the supply function is $p=x^{2}+4 x+11$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(2) The demand function for a product is $p=-x^{2}+250$, and the supply function is $p=x^{2}+50$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(3) The demand function for a product is $p=-x^{2}+400$, and the supply function is $p=x^{2}+34 x$. Find the equilibrium point, sketch the region whose area represents the producer surplus, and find the producer surplus.
(4) The demand function for a product is $p=\frac{100}{\sqrt{x+25}}$, and the supply function is $p=\sqrt{x+25}$. Find the equilibrium point, sketch the region whose area represents the producer surplus, and find the producer surplus.
(5) The demand function for a product is $p=\frac{250}{x+20}$, and the supply function is $p=x+5$. Find the equilibrium point, sketch the region whose area represents the consumer surplus, and find the consumer surplus.
(6) The demand function for a product is $p=-x^{2}+24$, and the supply function is $p=x^{2}+2 x$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(7) The demand function for a product is $p=-x^{2}+100$, and the supply function is $p=2 x+20$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(8) The demand function for a product is $p=-x^{2}+100$, and the supply function is $p=3 x+30$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(9) The demand function for a product is $p=144-x^{2}$, and the supply function is $p=48+\frac{1}{2} x^{2}$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(10) The demand function for a product is $p=-0.2 x^{2}+80$, and the supply function is $p=0.1 x^{2}+x+40$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(11) The demand function for a product is $p=\frac{12}{x+3}$, and the supply function is $p=x+2$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(12) The demand function for a product is $p=\frac{25}{\sqrt{x+16}}$, and the supply function is $p=\sqrt{x+16}$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.
(13) The demand function for a product is $p=\sqrt{9-0.02 x}$, and the supply function is $p=\sqrt{1+0.02 x}$. Find the equilibrium point, sketch the regions whose areas represent the consumer and producer surpluses, and find the consumer and producer surpluses.

ANSWERS:

(1) $\mathrm{E}=(5,56), \mathrm{CS}=\$ 83.33$
(2) $\mathrm{E}=(10,150), \mathrm{CS}=\$ 666.67$
(3) $\mathrm{E}=(8,336), \mathrm{PS}=\$ 1429.33$
(4) $\mathrm{E}=(75,10), \mathrm{PS}=\$ 166.67$
(5) $\mathrm{E}=(5,10), \mathrm{CS}=\$ 5.79$
(6) $\mathrm{E}=(3,15), \mathrm{CS}=\$ 18, \mathrm{PS}=\$ 27$
(7) $\mathrm{E}=(8,36), \mathrm{CS}=\$ 341.33, \mathrm{PS}=\$ 64$
(8) $\mathrm{E}=(7,51), \mathrm{CS}=\$ 228.67, \mathrm{PS}=\$ 73.50$
(9) $\mathrm{E}=(8,80), \mathrm{CS}=\$ 341.33, \mathrm{PS}=\$ 170.67$
(10) $\mathrm{E}=(10,60), \mathrm{CS}=\$ 133.33, \mathrm{PS}=\$ 116.67$
(11) $\mathrm{E}=(1,3), \mathrm{CS}=\$ 0.45, \mathrm{PS}=\$ 0.50$
(12) $\mathrm{E}=(9,5), \mathrm{CS}=\$ 5.00, \mathrm{PS}=\$ 4.33$
(13) $\mathrm{E}=(200,2.24), \mathrm{CS}=\$ 79.32, \mathrm{PS}=\$ 108.66$

