201-SH3-AB - Exercises #16: Probability

Numbers 1 to 5: Show that the function is a probability density function on the specified interval.

1. $f(x) = \frac{1}{16}x$ ($2 \le x \le 6$) 2. $f(x) = \frac{3}{8}x^2$ ($0 \le x \le 2$) 3. $f(x) = 20(x^3 - x^4)$ ($0 \le x \le 1$) 4. $f(x) = \frac{3}{14}\sqrt{x}$ ($1 \le x \le 4$) 5. $f(x) = \frac{x}{(x^2 + 1)^{\frac{3}{2}}}$ ($0 \le x < \infty$)

Numbers 6 to 9: Find the value of the constant k such that the function is a probability density function on the indicated interval.

- 6. f(x) = k (1 ≤ x ≤ 4) 8. $f(x) = k\sqrt{x}$ (0 ≤ x ≤ 4)
- 7. f(x) = k(4-x) $(0 \le x \le 4)$ 9. $f(x) = \frac{k}{x^3}$ $(1 \le x < \infty)$

10. Given that $f(x) = k(4x - x^2)$ is a probability density function on the interval $(0 \le x \le 4)$,

- (a) Find the value of the constant k.
- (b) Suppose that X is a continuous random variable with probability density function f. Find the probability that X will assume a value between 1 and 3.

Numbers 11 to 14: Given that f is the probability density function for the random variable X defined on the given interval, find the indicated probabilities.

- 11. $f(x) = \frac{1}{12}x$ (1 ≤ x ≤ 5) (a) $P(2 \le X \le 4)$ (b) $P(1 \le X \le 4)$ (c) $P(X \ge 2)$ (d) P(X = 2)12. $f(x) = \frac{3}{32}(4 - x^2)$ (-2 ≤ x ≤ 2) (a) $P(-1 \le X \le 1)$ (b) $P(X \le 0)$ (c) P(X > -1) (d) P(X = 0)13. $f(x) = \frac{1}{4\sqrt{x}}$ (1 ≤ x ≤ 9) (a) $P(X \ge 4)$ (b) $P(1 \le X < 8)$ (c) P(X = 3) (d) $P(X \le 4)$ 14. $f(x) = 4xe^{-2x^2}$ (0 ≤ x < ∞) (a) $P(0 \le X \le 4)$ (b) $P(X \ge 1)$
- 15. The average waiting time for patients arriving at one health clinic between 1 p.m. and 4 p.m. on a weekday is an exponential distributed random variable X with probability density function

$$f(x) = \frac{1}{15}e^{-x/100}; (0 \le x < \infty).$$

- (a) What is the probability that a patient arriving at the clinic between 1 p.m. and 4 p.m. will have to wait between 10 and 12 minutes?
- (b) What is the probability that a patient arriving at the clinic between 1 p.m. and 4 p.m. will have to wait more than 15 minutes?

16. The owner of a bakery finds that the waiting time (in minutes) for a customer to be served during the hours between 12 noon and 1 p.m. is an exponential distributed random variable X with associated probability density function

$$f(t) = \frac{1}{2}e^{-t/2}.$$

- (a) What is the probability that a customer arriving at the clinic between noon and 1 p.m. will have to wait at most 3 minutes?
- (b) What is the probability that a customer arriving at the clinic between noon and 1 p.m. will have to wait between 2 and 3 minutes?
- (c) What is the probability that a customer arriving at the clinic between noon and 1 p.m. will have to wait at least 3 minutes?
- 17. One welding company uses industrial robots in some of its assembly-line operations. Management has determined that the lengths of time (in hours) between breakdowns are exponentially distributed with probability density function

$$f(t) = 0.001e^{-0.001t}$$

- (a) What is the probability that a robot selected at random will break down between 600 and 800 hours of use?
- (b) What is the probability that a robot selected at random will break down after 1200 hours of use?
- 18. A study conducted by a mail-order department store reveals that the time intervals (in minutes) between incoming telephone calls on its toll-free 800 line between 10 a.m. and 2 p.m. are exponentially distributed with probability density function $f(t) = \frac{1}{30}e^{-t/30}$. What is the probability that the time interval between successive calls is more than 2 minutes?
- 19. The amount of rainfall (in inches) on a tropical island in the month of August is a continuous random variable with probability density function $f(x) = \frac{1}{16}x(6-x)$.

What is the probability that the amount of rainfall in August is less than 2 inches?

Numbers 20 to 25: Find the mean, variance, and the standard deviation of the random variable X associated with the probability density function over the indicated interval.

- 20. $f(x) = \frac{1}{3}$ $(3 \le x \le 6)$ 23. $f(x) = \frac{8}{7x^2}$ $(1 \le x \le 8)$ 21. $f(x) = \frac{3}{125}x^2$ $(0 \le x \le 5)$ 24. $f(x) = \frac{3}{14}\sqrt{x}$ $(1 \le x \le 4)$ 22. $f(x) = \frac{3}{32}(x-1)(5-x)$ $(1 \le x \le 5)$ 25. $f(x) = \frac{3}{x^4}$ $(1 \le x < \infty)$
- 26. The amount of time (in minutes) a shopper spends browsing in the magazine section of a supermarket is a continuous random variable with probability density function $f(t) = \frac{2}{25}t$ where $(0 \le t \le 5)$. How much time is a shopper chosen at random expected to spend in the magazine section?
- 27. The amount of time (in seconds) it takes a motorist to react to a road emergency is a continuous random variable with probability density function $f(t) = \frac{9}{4t^3}$ where $(1 \le t \le 3)$. What is the expected reaction time for a motorist chosen at random? Find the variance and the standard deviation.
- 28. The amount of snowfall (in feet) in a remote region in Alaska in the month of January is a continuous random variable with probability density function $f(t) = \frac{2}{9}x(3-x)$ where $(0 \le x \le 3)$. Find the amount of snowfall one can expect in any given month of January in Alaska. Find the variance and the standard deviation.

29. The lifespan (in years) of a certain brand of plasma TV is a continuous random variable with probability density function $f(t) = 9(9 + t^2)^{-3/2}$ where $(0 \le t < \infty)$. How long is one of these plasma TVs expected to last?

Numbers 30 to 32: Find the median of the random variable X associated with the probability density function over the indicated interval. Note that the median of X is defined to be the number m such that $P(X \le m) = \frac{1}{2}$.

30.
$$f(x) = \frac{1}{6}$$
 $(2 \le x \le 8)$
31. $f(x) = \frac{3}{16}\sqrt{x}$ $(0 \le x \le 4)$
32. $f(x) = \frac{1}{x^2}$ $(1 \le x < \infty)$

Numbers 33 to 38: Find the value of the probability of the standard normal random variable Z.

33. P(Z < 1.45)35. P(-1.32 < Z < 1.74)37. P(Z > -1.26)34. P(Z < -1.75)36. P(Z < -0.64)38. P(0.68 < Z < 2.02)

39. Let Z be the standard normal variable. Find the values of z if z satisfies:

(a) P(Z < z) = 0.8907 (b) P(Z < z) = 0.2090 (c) P(Z > -z) = 0.9713 (d) P(Z < -z) = 0.9713

- 40. Let X be a normal random variable with $\mu = 80$ and $\sigma = 10$. Find the values of:
 - (a) P(X < 100) (b) P(X > 60) (c) P(70 < X < 90)

41. Let X be a normal random variable with $\mu = 50$ and $\sigma = 5$. Find the values of:

- (a) P(X < 60) (b) P(X > 43) (c) P(46 < X < 58)
- 42. The serum cholesterol levels in milligrams per decaliter (mg/dL) in a current Mediterranean population are found to be normally distributed with a mean of 160 and a standard deviation of 50. Scientists at the National Heart, Lung, and Blood Institute consider this pattern ideal for a minimal risk of heart attacks. Find the percentage of the population having blood cholesterol levels between 160 and 180 mg/dL.
- 43. The medical records of infants delivered at one hospital show that the infants' length at birth (in inches) are normally distributed with a mean of 20 and a standard deviation of 2.6. Find the probability that an infant selected at random from among those delivered at the hospital measures:
 - (a) More than 22 inches. (b) Less than 18 inches. (c) Between 19 and 21 inches.
- 44. A certain company manufactures 50-,60-, 75-, and 100-watt light bulbs. Laboratory tests show that the lives of these light bulbs are normally distributed with a mean of 750 hours and a standard deviation of 75 hours. Find the probability that a light bulb selected at random from this company will burn:
 - (a) For more than 900 hours.
 (b) For less than 600 hours.
 (c) Between 750 and 900 hours.
 (d) Between 600 and 800 hours.
- 45. The scores on a sociology examination are normally distributed with a mean of 70 and a standard deviation of 10. Suppose the instructor assigns letter grades to students in the class as follows: Highest 15% get As ; next 25% get Bs ; next 40% get Cs; next 15% get Ds; lowest 5% get Fs Find the cutoff points for grades A through D.

6.	$k = \frac{1}{3}$	14. (a) 1	24. $\mu = \frac{93}{35};$	38. 0.2266
7.	$k = \frac{1}{8}$	(b) 0.135 15. (a) 0.06	$Var(X) \approx 0.7151;$ $\sigma \approx 0.846$	39. (a) 1.23 (b) -0.81
8.	$k = \frac{3}{16}$	(b) 0.37	25. $\mu = \frac{3}{2};$	(c) 1.9
9.	k = 2	16. (a) 0.777	$Var(X) = \frac{3}{4};$	(d) -1.9
10.	(a) $k = \frac{3}{32}$	(b) 0.145 (c) 0.223	$\sigma = \frac{1}{2}\sqrt{3}$	40. (a) 0.9772
	(b) $\frac{11}{16}$	17. (a) 0.099	26. $3\frac{1}{3}$ minutes	(b) 0.9772
	10	(b) 0.30	27. 1.5 seconds;	(c) 0.6826
11.	(a) $k = \frac{1}{2}$	18. 0.02	$\frac{\frac{9}{4}(ln3-1);}{\frac{3}{2}\sqrt{(ln3-1)}}$	41. (a) 0.9772
	(b) $\frac{3}{8}$	19. 0.5833	28 1 5 feet:	(b) 0.9192
	(c) $k = \frac{7}{8}$	$20 \mu = \frac{9}{2}$	$\frac{9}{20};$	(c) 0.7333
	(d) 0	20. $\mu = \frac{1}{2},$ 3	0.671	42. 0.1554
12.	(a) $k = \frac{11}{16}$	$Var(X) = \frac{1}{4};$ $\sigma \approx 0.8660$	29. 3 years 30. $m = 5$	43. (a) 0.2206
	(b) $\frac{1}{2}$	21. $\mu = \frac{15}{4};$	$31 m \approx 2.52$	(b) 0.2206
	(c) $k = \frac{27}{27}$	$Var(X) = \frac{15}{12};$	31. $m \sim 2.52$	(c) 0.2960
	(d) 0 32	$\sigma \approx 0.9682^{-16}$	32. m = 2	44. (a) 0.0228
19	(a) $h = \frac{1}{2}$	22. $\mu = 3;$	33. 0.9205	(b) 0.0228
15.	(a) $k = \frac{1}{2}$	$Var(X) = 0.8;$ $\tau \simeq 0.8044$	34. 0.0401	(c) 0.4772
	(b) $\frac{1}{2}(2\sqrt{2}-1)$	$v \sim 0.0944$	35. 0.8657	(d) 0.7258
	(c) 0	23. $\mu \approx 2.3765;$ $Var(X) \approx 2.3522;$	36. 0.2611	45. A: 80: B:73:
	(d) $k = \frac{1}{2}$	$\sigma \approx 1.5337$	37. 0.8962	C:62; D:54